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Motivation 

Experimental results of RD50 
 

Detector design:  

strip n-on-p  Qcmax/Qmip 1.5 – 1.8;  

pad (Epi p-on-n) 6-9 

 (e-h near the surface) 

Our calculation 

    n-on-p, strip     

Qcmax/Qmip 1.5 – 1.9 

- as in the experiments 
 

      Relatively low! 

Avalanche PhotoDiodes (APD)  

High electric field + impact ionization - 

   E – hundreds kV/cm, internal gain ~200 

(Hamamatzu) and even more 

Extended fluence range  

- up to 1017 neq/cm2 (2013) 

- stable operation 

What is the origin of restriction 

on Qc gain in heavily irradiated 

Si n-on-p strip detectors?  
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Almost no difference in charge 

collection efficiency for different 

implants  

  Spaghetti diodes 
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Origin of Qc restriction:  
comparison with imaginary “APD” 

Hamamatsu APD 

Read structures 

I ~ 20 pA ( 1.5 mm) 

E – hundreds kV/cm 

    Irradiated detector is compared 

    with imaginary structure - “Quasi-APD”:  
 

 n-on-p strip diode 

 E(x) as in heavily irradiated detector (high V) 

 carrier avalanche multiplication 

     but  

 no injection and trapping of  holes 

 ttr = 1 ms (no trapping of nonequilibrium carriers) 

Qc enhancement: 
 

Kenh = Qcmax/Qmip 

 

In n-on-p strip  

detectors 

Kenh = 1.5-1.9 - 
 

our calculation  

 and experiment 

Internal gain 
 

G = Qam/Qo 

Qo - signal induced on the strip, 

calculated without avalanche 

multiplication  

Qam - signal measured or 

calculated in the same detector 

with avalanche multiplication 
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Goal 

 Finding the origin of restriction on the collected charge enhancement 

(gain in collected charge) in heavily irradiated Si n-on-p strip detectors  
  

     by simulation E(x) and Qc and comparison with Quasi-APD  
         

 - structure different from classic APD and LGAD 
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Results are published in: 

E. Verbitskaya, et al., NIM A 730 (2013) 66 



V. Eremin, et al., 14 and 15 RD50 workshops, 2009, Freiburg and Geneva 

V. Eremin, E. Verbitskaya, A. Zabrodskii, Z. Li, J. Härkönen, NIM A 658 (2011) 145 

E. Verbitskaya, V. Eremin, A. Zabrodskii, 2012, J. Instrum., v.7, 2, ArtNo: C02061;   

                doi: 10.1088/1748-0221/7/02/C02061 
E. Verbitskaya, et al., NIM A 730 (2013) 66 

      The PTI model considers: 

formation of Double Peak (DP) electric field profile  – DP E(x); 

 focusing of the electric field and current near the collecting n+ strips;  

 avalanche hole generation near the n+ strips, hole injection into the detector bulk,      

 and hole trapping to radiation-induced deep levels defects  
    

  give rise to the negative feedback which stabilizes the avalanche multiplication 

          and total detector performance 

6 

PTI model of Qc enhancement 
due to avalanche multiplication  

in heavily irradiated n-on-p Si strip detectors  
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PTI model of Qc enhancement  
via avalanche multiplication and negative feedback  

Equilibrium carriers High bias voltage Nonequilibrium carriers 
source/ 

origin 

process characteristic 

/result 

 process characteristic

/result 

source/
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E(x) changes via trapping-related  
negative feedback  

Negative feedback in n-on-p detectors: 

impact ionization near n+ (e, h) 

 hole injection 

 hole trapping to DLs  reduction of –Neff 

 reduction of dE/dx  

     and Emax at n+ 

 reduction of ae,h 

Trapping-related negative feedback:  
 

       stabilizes avalanche multiplication 

          and total detector performance  
                  

           BUT  

      simultaneously restricts Qc enhancement 
 

   Trapping-related or Space Charge Limited Current 

negative feedback  

p+ n+ 

E(x) 
Emax 
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     Processes considered:  

  formation of a steady-state E(x) distribution:  

    equilibrium carriers (bulk generation current) and avalanche generated carriers near  

     n+ strips, their trapping on radiation-induced DL defects; 

 charge collection in the detector bulk with a calculated E(x) profile;  

 e and h are generated by MIPs 

     Procedure and main parameters 
 

♦ Poisson equation combined with the rate equation 
 

♦ one-dimensional approach for detector geometry 
 

♦ Effective deep levels: DA  Ec – 0.53 eV;    DD  Ev + 0.48 eV 
 

♦ 1/te,h = be,hFeq;     be = 3.2x10-16 cm2ns-1, bh = 3.5x10-16 cm2ns-1 

 

♦  ionization rates ae,h = Ae,hexp(-Be,h/E) 
 

   (A and B from B. J. Baliga, Modern Power Devices, Hoboken, NJ; Wiley, 1987) 
 

♦ numerical calculation 

9 

Algorithm of E(x) and Qc simulation 
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Simulation of Qc enhancement 

             Variable parameters  
 

♦ detector bias voltage V,  

♦ temperature T in the LHC range,  

♦ irradiation fluence F,  

♦ strip detector geometry (strip width,  

detector thickness) 

Starting point for simulation –  
 

fit to the curve [*] with maximal Qc:  

F = 3x1015 neq/cm2,   T = -20C 

* I. Mandić, et al., NIM A 612 (2010) 474) 

** G. Casse, Recent developments in silicon 

detectors, 13th VCI, Feb 11-15, 2013 Vienna; 

http:// vci.hephy.at 

E. Verbitskaya,, et  al., 23 RD50 workshop, Nov 13-15, 2013, CERN 
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Options for E(x) and Qc simulations 

    Kaval Kinj mj ttr 

 # Possible values 1/0 1/0 1/1x10-4 ttr(F)/1 ms 

1 Detector, no 

multiplication 

0 1/0 1 ttr(F) 

2 Detector, with 

multiplication 

1 1 1 ttr(F) 

3 Detector, with 

multiplication, 

NO feedback 

  

1 

  

0 

  

1 

  

ttr(F) 

4 Quasi-APD 1 1 0 1 1 ms 

5 Quasi-APD 2 1 0 1x10-4 1 ms 

Kaval – avalanche multiplication 

Kinj    - injection of avalanche generated holes 

mj      - current generation rate   

Allows differentiation between impact of different factors - E(x) profile, 

current generation rate, trapping 

E. Verbitskaya,, et  al., 23 RD50 workshop, Nov 13-15, 2013, CERN 
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Comparative results on E(x), Qc and G 

1 Detector, no multiplication 1 

2 Detector, with multiplication 5.7 

3 Detector, with multiplication,  

no feedback 

43 

4 Quasi-APD 1 800 

5 Quasi-APD 2 21 
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F = 3x1015 neq/cm2 

E(x) stabilization at different V and F 
due to negative feedback 

Stabilization of Emax at n+ strips 

At F>1x1015 cm-2 

Emax is insensitive 

to V 

At F>5x1015 cm-2 

the difference in 

Emax in 300 mm and 

100 mm detectors is 

not essential at 

fixed V  

 DP E(x) in avalanche 

multiplication mode 

 Emax at n+ strip is stable 

 Emax stability reduces 

sensitivity of Qc to the 

design of the region with 

high E (shown in the 

experiments e.g. with 

spaghetti diodes). 
E. Verbitskaya,, et  al., 23 RD50 workshop, Nov 13-15, 2013, CERN 
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 Qc enhancement starts at    

~500 V - DP E(x)  (d = 300 mm) 
 

 Qc(F) is nonmonotonous  

 and shows a bump 
 

 Qc in bump is larger than Qmip 

Qc(F) dependence in n-on-p strip detectors  

Kenh = Qcmax/Qmip  

 

= 1.4  - 300 mm 

   1.9  - 100 mm 
 

- agrees with experiment 

E. Verbitskaya,, et  al., 23 RD50 workshop, Nov 13-15, 2013, CERN 
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Gain in strip detectors with various thickness 

 Similar G in 300 mm and 100 mm detectors 

at highest V 
 

 Maximum G is shifted to higher F in 100 mm 

detectors 

E. Verbitskaya,, et  al., 23 RD50 workshop, Nov 13-15, 2013, CERN 
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Comparison with experimental results 

G. Casse,20th RD50 Workshop, Bari, 

 31/05-02/06 2012 

Calculated Qc(F) with a bump 

correlates to the experiment 

for thin detectors 
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 Internal gain in collected charge due to avalanche multiplication 

is strongly suppressed and simultaneously stabilized by the 

trapping-related negative feedback which is a specific of 

detectors with high concentration of  deep levels.  
 

 The gain is in the range 1-6 for both standard and thin detectors, 

which defines the limit for the signal enhancement and 

operational fluence range. 

  

 Trapping-related negative feedback makes the gain practically 

insensitive to the design of the detector high field region 

       

Conclusions 
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