

1

Trapping-related negative feedback as the reason for collected charge restriction in heavily irradiated Si detectors operating with avalanche multiplication

E. Verbitskaya, V. Eremin, A. Zabrodskii

Ioffe Physical-Technical Institute of Russian Academy of Sciences St. Petersburg, Russia

Z. Li

Brookhaven National Laboratory Upton, NY, USA

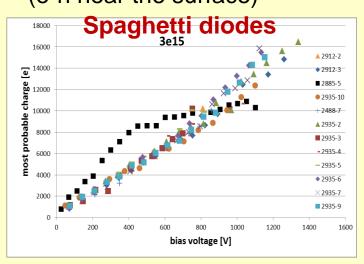
P. Luukka Helsinki Institute of Physics, Helsinki, Finland

> 23 RD50 Collaboration Workshop CERN, Geneva, Nov 13-15, 2013

Outline

Motivation

- PTI model of Q_c enhancement in irradiated Si detectors
- Restriction on collected charge arisen from negative feedback in irradiated Si detectors: comparison with "Quasi-APD"
- Stabilization of E(x) in irradiated Si n-on-p strip detectors
- Gain in Q_c in detectors with various thickness
- Comparison with experimental data


Conclusions

Motivation

Experimental results of RD50

Detector design:

strip n-on-p Q_{cmax}/Q_{mip} 1.5 – 1.8; pad (Epi p-on-n) 6-9 (e-h near the surface)

Almost no difference in charge collection efficiency for different implants

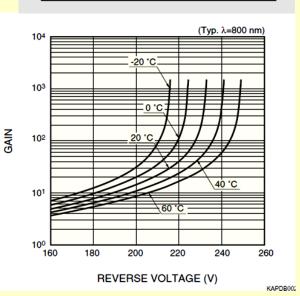
Extended fluence range

- up to 10¹⁷ n_{eq}/cm² (2013)
- stable operation

Our calculation

n-on-p, strip Q_{cmax}/Q_{mip} 1.5 – 1.9 - as in the experiments

Relatively low!


Avalanche PhotoDiodes (APD) High electric field + impact ionization -*E* – hundreds kV/cm, internal gain ~200 (Hamamatzu) and even more

What is the origin of restriction on Q_c gain in heavily irradiated Si n-on-p strip detectors?

Origin of Q_c restriction: comparison with imaginary "APD"

Hamamatsu APD Read structures $I \sim 20 \text{ pA} (\emptyset 1.5 \text{ mm})$ E - hundreds kV/cm \downarrow P (AVALANCHE REGION)

W (LIGHT ABSORPTION REGION)

Irradiated detector is compared with imaginary structure - "Quasi-APD":

- n-on-p strip diode
- E(x) as in heavily irradiated detector (high V)
- carrier avalanche multiplication
 but
- no injection and trapping of holes
- $\tau_{tr} = 1 \text{ ms}$ (no trapping of nonequilibrium carriers)

*Q*_{*c*} enhancement:

$$K_{enh} = Q_{cmax}/Q_{min}$$

In n-on-p strip detectors $K_{enh} = 1.5-1.9$ -

our calculation and experiment Internal gain

$$G = Q_{am}/Q_o$$

Q_o - signal induced on the strip, calculated without avalanche multiplication

 Q_{am} - signal measured or calculated in the same detector with avalanche multiplication

Goal

✓ Finding the origin of restriction on the collected charge enhancement (gain in collected charge) in heavily irradiated Si n-on-p strip detectors

by simulation E(x) and Q_c and comparison with Quasi-APD

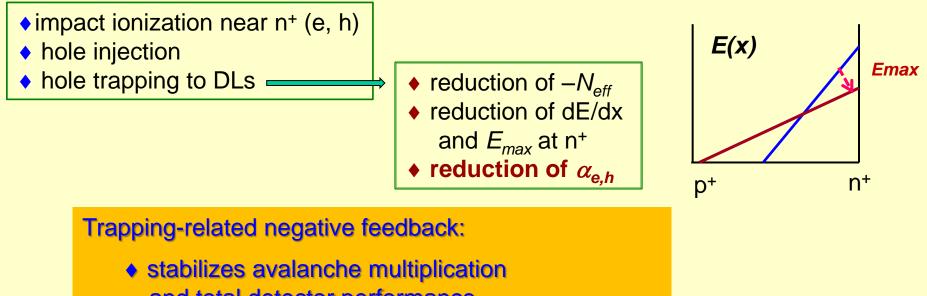
- structure different from classic APD and LGAD

Results are published in: E. Verbitskaya, et al., NIM A 730 (2013) 66

PTI model of Q_c enhancement due to avalanche multiplication in heavily irradiated n-on-p Si strip detectors

The PTI model considers:

✓ formation of Double Peak (DP) electric field profile - DP E(x);


- \checkmark focusing of the electric field and current near the collecting n⁺ strips;
- ✓ avalanche hole generation near the n⁺ strips, hole injection into the detector bulk, and hole trapping to radiation-induced deep levels defects
- ➔ give rise to the negative feedback which stabilizes the avalanche multiplication and total detector performance
 - V. Eremin, et al., *14 and 15 RD50 workshops*, *2009*, *Freiburg and Geneva*V. Eremin, E. Verbitskaya, A. Zabrodskii, Z. Li, J. Härkönen, *NIM A 658 (2011) 145*E. Verbitskaya, V. Eremin, A. Zabrodskii, 2012, J. Instrum., v.7, 2, ArtNo: C02061; doi: 10.1088/1748-0221/7/02/C02061
 E. Verbitskaya, et al., NIM A 730 (2013) 66

PTI model of Q_c enhancement via avalanche multiplication and negative feedback

Equilibrium carriers			High bias voltage			Nonequilibrium carriers		
source/ origin	process	characteristic /result		process	characteristic /result	source/ origin	process	characteristic /result
Bulk genera- tion current	Trapping to DLs	<i>I_{bgen}</i> ; steady-state DP <i>E</i> (<i>x</i>)	Junction region with high <i>E</i> ; focusing	Impact ioniza- tion, carrier injection into the bulk, trapping to DLs	I _{bgen} increase; Change of steady-state DP $E(x) \rightarrow$ <i>E</i> reduction near the junction	Gene- rated by parti- cles	Trapping to DLs during drift in <i>E(x)</i>	$\tau_{tr}(F);$ pulse response, Q_c (CCE)
				Trapping – related negative feedback				

E(x) changes via trapping-related negative feedback

Negative feedback in n-on-p detectors:

and total detector performance

BUT

simultaneously restricts Q_c enhancement

Trapping-related or Space Charge Limited Current negative feedback

Algorithm of E(x) and Q_c simulation

Processes considered:

✓ formation of a steady-state *E*(*x*) distribution:
 equilibrium carriers (bulk generation current) and avalanche generated carriers near n⁺ strips, their trapping on radiation-induced DL defects;

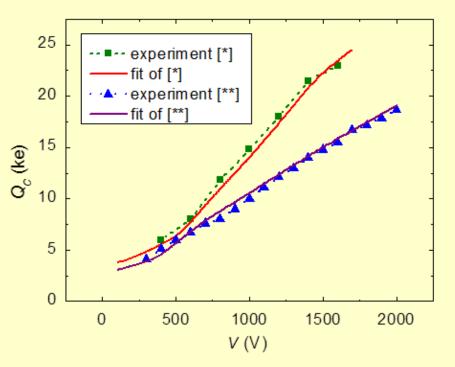
- \forall charge collection in the detector bulk with a calculated E(x) profile;
- \vee e and h are generated by MIPs

Procedure and main parameters

- Poisson equation combined with the rate equation
- ♦ one-dimensional approach for detector geometry
- Effective deep levels: DA $E_c 0.53 \text{ eV}$; DD $E_v + 0.48 \text{ eV}$
- $1/\tau_{e,h} = \beta_{e,h}F_{eq}$; $\beta_e = 3.2 \times 10^{-16} \,\mathrm{cm}^2 \mathrm{ns}^{-1}$, $\beta_h = 3.5 \times 10^{-16} \,\mathrm{cm}^2 \mathrm{ns}^{-1}$
- ionization rates $\alpha_{e,h} = A_{e,h} exp(-B_{e,h}/E)$

(A and B from B. J. Baliga, Modern Power Devices, Hoboken, NJ; Wiley, 1987)

Interval values and the second sec


Simulation of Q_c enhancement

Variable parameters

- ♦ detector bias voltage *V*,
- ♦ temperature *T* in the LHC range,
- ♦ irradiation fluence *F*,
- strip detector geometry (strip width, detector thickness)

Starting point for simulation –

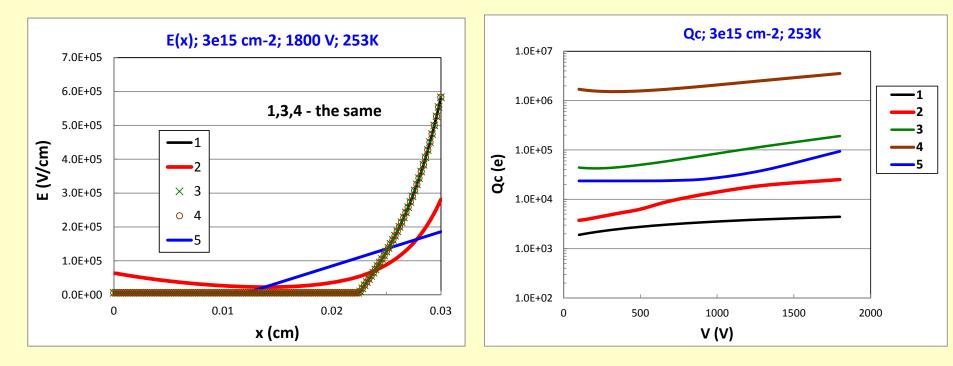
fit to the curve [*] with maximal Q_c : $F = 3 \times 10^{15} \text{ n}_{eq}/\text{cm}^2, \text{ T} = -20 \text{C}$

* I. Mandić, et al., NIM A 612 (2010) 474) ** G. Casse, Recent developments in silicon detectors, 13th VCI, Feb 11-15, 2013 Vienna; http:// vci.hephy.at

Options for E(x) and Q_c simulations

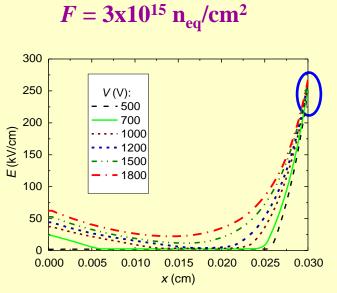
		K aval	K _{inj}	<i>m</i> _j	$ au_{tr}$
#	Possible values	1/0	1/0	1/1x10 ⁻⁴	$ au_{tr}(F)/1 \mathrm{ms}$
1	Detector, no multiplication	0	1/0	1	$ au_{tr}(F)$
2	Detector, with multiplication	1	1	1	$ au_{tr}(F)$
(3)	Detector, with multiplication, NO feedback	1	0	1	$ au_{tr}(F)$
4	Quasi-APD 1	1	0	1	1 ms
5	Quasi-APD 2	1	0	1x10 ⁻⁴	1 ms

 K_{aval} – avalanche multiplication

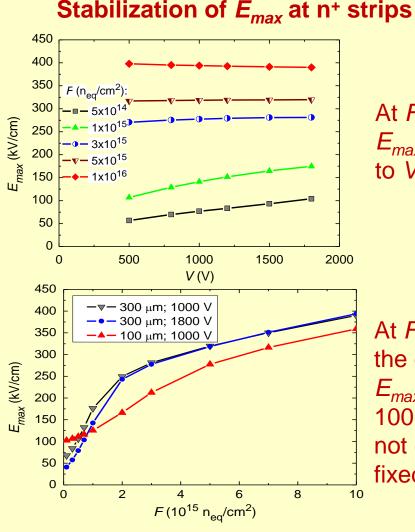

- K_{ini} injection of avalanche generated holes
- m_i current generation rate

Allows differentiation between impact of different factors - E(x) profile, current generation rate, trapping

E. Verbitskaya,, et al., 23 RD50 workshop, Nov 13-15, 2013, CERN

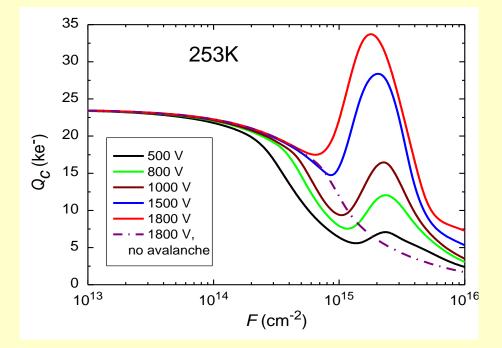

11

Comparative results on E(x), Q_c and G


1	Detector, no multiplication	1	Gain at		
2	Detector, with multiplication	5.7	1800 V		
3	Detector, with multiplication, no feedback	43	n-on-p strip detector ; $d = 300 \mu\text{m}$; pitch/strip width 80/20 (μm)		
4	Quasi-APD 1	800			
5	Quasi-APD 2	21	$F = 3 \times 10^{15} n_{eq}^{2} / cm^{2}$		
		E. Verbitskaya,, et al., 23 RD50 workshop, Nov 13-15, 2013, CERN			

E(x) stabilization at different V and F due to negative feedback

✓ DP E(x) in avalanche multiplication mode


 ✓ E_{max} at n⁺ strip is stable
 ✓ E_{max} stability reduces sensitivity of Q_c to the design of the region with high E (shown in the experiments e.g. with spaghetti diodes).

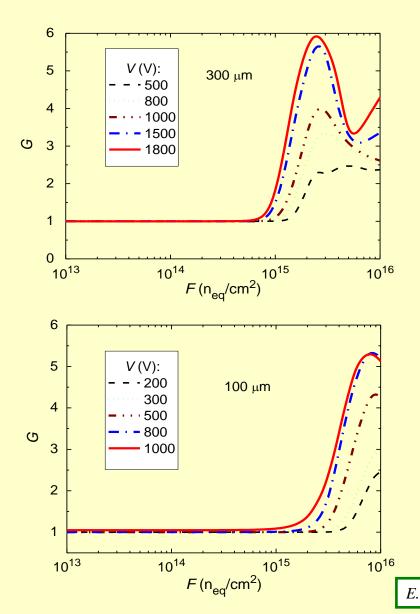
At F>1x10¹⁵ cm⁻² E_{max} is insensitive to V

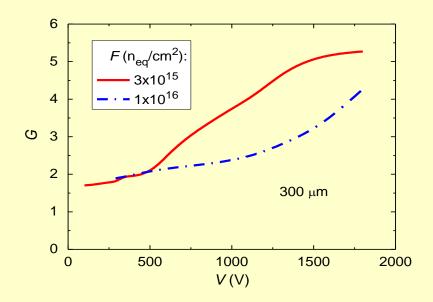
At F>5x10¹⁵ cm⁻² the difference in E_{max} in 300 µm and 100 µm detectors is not essential at fixed V

$Q_c(F)$ dependence in n-on-p strip detectors

E. Verbitskaya, et al.,, 2012, J. Instrum., v.7, 2 # C02061 ✓ Q_c enhancement starts at ~500 V - DP E(x) ($d = 300 \mu$ m)

✓ Q_c(F) is nonmonotonous and shows a **bump**

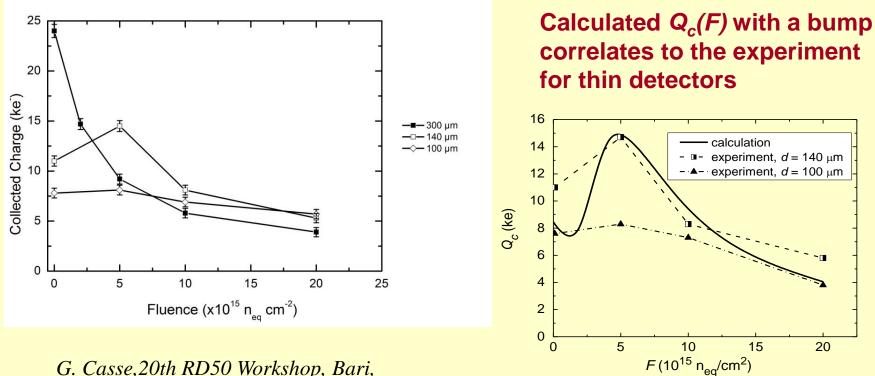

 \vee Q_c in bump is larger than Q_{mip}


$$K_{enh} = Q_{cmax}/Q_{mip}$$

- 1.4 - 300 μm **1.9** - 100 μm

- agrees with experiment

Gain in strip detectors with various thickness


✓ Similar G in 300 μ m and 100 μ m detectors at highest V

✓ Maximum *G* is shifted to higher *F* in 100 μ m detectors

E. Verbitskaya,, et al., 23 RD50 workshop, Nov 13-15, 2013, CERN

15

Comparison with experimental results

G. Casse,20th RD50 Workshop, Bari, 31/05-02/06 2012

Conclusions

- Internal gain in collected charge due to avalanche multiplication is strongly suppressed and simultaneously stabilized by the trapping-related negative feedback which is a specific of detectors with high concentration of deep levels.
- The gain is in the range 1-6 for both standard and thin detectors, which defines the limit for the signal enhancement and operational fluence range.
- Trapping-related negative feedback makes the gain practically insensitive to the design of the detector high field region

Acknowledgments

This work was made within the framework of CERN RD50 collaboration and supported in part by:

- Fundamental Program of Russian Academy of Sciences on collaboration with CERN,
- Russian Federation President Grant # SS-3008.2012.2,
- US Department of Energy, contract no DE-AC02-98CH10886

Thank you for attention!