

SPONSORED BY THE

Federal Ministry of Education and Research

Experimental study of the Si-SiO₂ interface region in p⁺n-silicon strip sensors before and after 1 MGy X-ray irradiation T. Poehlsen, E. Fretwurst, R. Klanner, J. Schwandt, J. Zhang University of Hamburg

23rd RD50 Workshop, CERN, Geneva 2013, November 14th

23rd RD50 Workshop, CERN, Geneva, 14th of October 2013

The region close to the Si-SiO₂ interface is highly relevant:

- Highest electric fields \rightarrow charge multiplication or breakdown.
- Electron or hole accumulation layers → short cuts or increase of the capacitance between the electrodes, may lower breakdown voltage.
- Lowest electric fields \rightarrow increase of charge-collection times \rightarrow ballistic deficit, pile-up.

Requirements for silicon sensors:

- ... also after surface radiation damage (e.g. up to ~1 GGy at X-FEL, up to ~4 MGy at HL-LHC (pixel)) (companies will not guarantee stable sensor operation after irradiation)
- **High bias voltages** for fast charge collection (e.g. 500 V for AGIPD at the European X-FEL)
- Stable sensor operation (problems: long-time run-aways, early breakdowns, non-Gaussian noise hits, ...).
- Low inter-strip capacitances, low currents, ...

Expected dose and oxide charge densities

Fig. 1. Dependence of the surface-charge density, N_{ox} , on X-ray dose obtained from measurements on MOS capacitors from four different vendors after annealing for 10 min at 80 °C.

 \Rightarrow Oxide charge densities of 1 to 2.10¹² cm⁻² are expected at the HL-LHC (for R<60 cm)

Simulations may be used to **predict the sensor performance** (electric field, charge collection, breakdown voltage, capacitances, ...) and to **optimise the sensor design**.

- What **boundary conditions** should be used on the top of the passivation? (or shall one introduce a box above sensor with b.c. there, and put charges on SiO₂ surface?)
- Does the electric field, and do the boundary conditions develop in time ?
- How does humidity influence the electric field / boundary conditions?
- What is the charge distribution at the Si-SiO₂ interface?

Approach:

Study charge losses at the Si-SiO₂ interface and correlate them to the electric-field distribution and the boundary conditions.

Investigated strip sensor

Another p⁺n silicon strip sensor produced by CiS has also been tested \rightarrow similar results

Only results for the Hamamatsu sensor will be shown

Irradiation:

- a) None (0 Gy)
- b) 12 keV X-rays (1 MGy in SiO₂)

→ surface damage only (300 keV needed for bulk damage)

Atmosphere during measurement:

- T ≈ 24 °C (room temperature)
- Humidity (rh.): < 1% to 85 %

Operation voltage

- 200 V for all measurements shown (full-depletion voltage: 155 V)
- Different biasing histories:

 $\begin{array}{c} 0 \ \mathsf{V} \rightarrow 200 \ \mathsf{V} \\ 500 \ \mathsf{V} \rightarrow 200 \ \mathsf{V} \end{array}$

Measurement procedure: Transient Current Technique (TCT)

Illumination:

- At the strip side
- $\lambda = 660$ nm, attenuation length $\approx 3.5 \ \mu m$
- $\lambda = 830$ nm, attenuation length $\approx 13 \ \mu m$
- Sub-ns pulses (FWHM 100 ps)
- Focus: σ = 3 μm
- ~100 000 eh pairs generated per pulse

<u>Readout</u>:

- Two strips & the rear contact
- Femto HSA-X-2-40 current amplifiers
- Tektronix oscilloscope, 2.5 GHz bandwidth
- Neighbouring strips on ground (via 50 Ω)
- Charge Q calculated offline:

$$Q = \int I(t) \, \mathrm{d}t$$

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Measurement procedure: Transient Current Technique (TCT)

Illumination:

- At the strip side
- $\lambda = 660 \text{ nm}$, attenuation length $\approx 3.5 \mu \text{m}$
- $\lambda = 830$ nm, attenuation length $\approx 13 \ \mu m$
- Sub-ns pulses (FWHM 100 ps)
- Focus: σ = 3 μm
- ~100 000 eh pairs generated per pulse

Readout:

- Two strips & the rear contact
- Femto HSA-X-2-40 current amplifiers
- Tektronix oscilloscope, 2.5 GHz bandwidth
- Neighbouring strips on ground (via 50 Ω)
- Charge Q calculated offline:

$$Q = \int I(t) \, \mathrm{d}t$$

Weighting potential and induced signals for strip readout

Weighting potential calculation takes into account the accumulation layer:

Weighting potential and induced signals for strip readout

Weighting potential calculation takes into account the accumulation laver:

- Measurement 1 (0 Gy, humid) ⇒ Electron and hole collection
- Measurement 2 (1 MGy, dried@0V)
- \Rightarrow Only hole collection

(~95% electron losses)

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Weighting potential and induced signals for strip readout

Device simulations – 0 Gy: electric potential

a) 0 V: ~0 surface charge \rightarrow add air, go to 200V \Rightarrow electron losses and longitudinal E-field

(very similar: Neumann boundary conditions)

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Device simulations – 0 Gy: electric potential

- a) 0 V: ~0 surface charge \rightarrow add air, go to 200V \Rightarrow electron losses and longitudinal E-field
- b) redistribute surface charge at 200V bias by using gated b.c. (set surface potential = 0V)
- ⇒ Boundary conditions have a significant impact on the E-field

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Time development of charge losses, 0 Gy

0

5

dry (<1%, t[h]) x=75μm

10 15 20 25 30 35 40

200 V

dry: time[h]

0Gy, 0V → 200V

140k eh pairs

23rd RD50 Workshop, CERN, Geneva, Nov 2013

thomas.poehlsen@desy.de

Time development of charge losses, 0 Gy

Determine lost charge 0 30000 at a given position of illumination xost charge [e] $\int I \, dt = Q_{lost} \cdot \phi_w(x)$ 20000 10000 0 -10000 $\Rightarrow Q_{lost} = \frac{\int I \, dt}{\phi_w(x)}$ -20000 -30000 -40000 -50000 $0 V \rightarrow 200 V$ at time = 0 In dry atmosphere (<1% rh.) a) b) In humid atmosphere (71% rh.) Before: sensor at 0 V for > 2 hours in humid atmosphere

Si-SO2 interface region in p+n-silicon strip sensors,

23rd RD50 Workshop, CERN, Geneva, Nov 2013

thomas.poehlsen@desy.de

Relative time constants as a function of humidity for the non-irradiated sensor

Humidity dependence very similar for

time constants & sheet resistance \Rightarrow surface currents responsible for time development?

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Non-irradiated sensor:

Electric fields and accumulation layers very different for different biasing histories

- ⇒ Described by simulations only, if surface charge is taken into account:
- $0 V \rightarrow 200 V \Rightarrow$ electron losses explained at time = 0
- 500 V → 200 V ⇒ hole losses explained at time = 0 (not shown)
- in steady state: ⇒ full charge collection (humid: minutes, dry: hours to days)

Some answers found ...

Boundary conditions on the sensor surface have a significant impact on E-field distr.:

- ⇒ Steady state: constant surface potential (gated boundary conditions)
- ⇒ After ramping: calculate charges on sensor surface

(often done: Neumann boundary conditions -> similar to state directly after ramping) Electric field varies with time: Cannot be described with fixed boundary conditions. Humidity -> time constants: minutes to days

Time development of charge losses non-irradiated vs. after 1 MGy

relative time const. 70% h./dry = 1/ 30

relative time const. 70% h./dry >> 1/ 10 000 dry: E-field still changes after > 6 days

Before irradiation: time constants <-> surface resitivity,

(& simulations describe electron losses at t=0, full charge collection at t $\rightarrow \infty$)

<u>After irradiation</u>: additional effects relevant (interface traps with impact on E-field ?)

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

A measurement of the point of zero-field for the sensor after 1 MGy X-ray irradiation

 \Rightarrow Charge losses compatible with the simulated zero-field point, 7 μm below SiO_2

(for t > 0 and in steady state this is not true -> N_{ox} <10¹² cm⁻² ?)

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Time dependence: The E-field distributions changes significantly with time

--> not described by fixed boundary conditions

--> surface charges must be taken into account

Time constants are a function of humidity (due to the surface resistivity) After 1 MGy X-ray irradiation: Even stronger impact of humidity (not fully understood) Dry atmosphere: steady state not reached after 6 days

Boundary conditions on the surface (-> or surface charges) and oxide charges have a significant impact on the electric field (and on the accumulation layers) --> also impact on charge sharing?

Surface damage also relevant at the HL-LHC (up to ~5 MGy)

Charge losses at Si-SiO₂ interface are ...

- ... very sensitive to changes in the electric field close to Si-SiO₂ interface
- ... relevant for low-energy ion experiments with strip-side illumination
- ... not studied in detail for n-on-p sensors

Further information on studies using charge losses at the Si-SiO2 interface can be found in:

T. Poehlsen, E. Fretwurst, R. Klanner, S. Schuwalow, J. Schwandt, J. Zhang, Nucl. Instr. and Meth. A 700 (2013) 22–39

T. Poehlsen, J. Becker, E. Fretwurst, R. Klanner, J. Schwandt, J. Zhang, Nucl. Instr. and Meth. A 721 (2013) 26–34

T. Poehlsen, E. Fretwurst, R. Klanner, J. Schwandt, J. Zhang, Nucl. Instr. and Meth. A 731 (2013) 172–176

R. Klanner E. Fretwurst, I. Pintilie, J. Schwandt, J. Zhanga, Nucl. Instr. and Meth. A , DOI: 10.1016/j. nima.2013.05.131

Non-irradiated sensor (p-on-n):

Electric field at the Si-SiO₂ interface qualitatively understood:

- Charge distribution on the top of the passivation layer and E-field changes with time
- Humidity-dependent surface resistivity \rightarrow time constants are a function of humidity
- **Different boundary conditions** (/surface charges) for different biasing and humidity histories **needed**, to describe E-field, charge collection and accumulation layers.

Sensor after 1 MGy irradiation (p-on-n):

- For "dried at OV" (OV->200V, at t ≈ 0): electric field well described using N_{ox}=10¹²cm⁻² (simulated point of zero electric field compatible with measurements)
- For t > 0 and other humidity and biasing histories: simulations not compatible with measurements (implement interface traps differently?)

Charge losses at Si-SiO₂ interface are ...

- ... very sensitive to changes in the electric field close to Si-SiO₂ interface
- ... relevant for low-energy ion experiments with strip-side illumination
- ... not studied in detail for n-on-p sensors (for p-on-n: not relevant for MIPs)

Further information on the topic can be found in:

T. Poehlsen, E. Fretwurst, R. Klanner, S. Schuwalow, J. Schwandt, J. Zhang, Nucl. Instr. and Meth. A 700 (2013) 22–39 T. Poehlsen, J. Becker, E. Fretwurst, R. Klanner, J. Schwandt, J. Zhang, Nucl. Instr. and Meth. A 721 (2013) 26–34 T. Poehlsen, E. Fretwurst, R. Klanner, J. Schwandt, J. Zhang, Nucl. Instr. and Meth. A 731 (2013) 172–176

The electric potential for a typical assumption on the oxide charge density N_{ox}

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Collected electrons and holes, accumulation layer width for different biasing histories

Position scans, strip- & rear-side readout \Rightarrow extract number of electrons and holes collected & accumulation layer width

Q(x) is described by a model calculation

Fit results – non-irradiated			
	humid	dried at 500V	dried at OV
electrons*	135 000	137 000	58 000
holes	133 000	64 000	133 000
acc. layer	-	31 µm	36 µm
* shown is the average number of electrons (of the position scan)			

Depending on the biasing history:

- electron losses (~50 %),
- full charge collection, and
- hole losses (~50 %)

are observed in non-irradiated sensor.

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Fit results – after 1 MGy			
	humid	dried at 500V	dried at OV
electrons*	91 000	124 000	5 000
holes	121 000	112 000	126 000
acc. layer	34 µm	-	36 µm
* shown is the average number of electrons (of the position scan)			

Depending on the biasing history:

- strong electron losses (~95 %),
- few electron losses, and
- few hole losses

are observed after 1 MGy irradiation.

Charge as a function of light-spot position Simulated and measured

Full charge collection, and

Hole losses

are observed in the non-irradiated sensor.

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Charge as a function of light-spot position after 1 MGy – simulated and measured

few hole losses

are observed after 1 MGy irradiation.

position scan Biasing and humidity history (start with 60% h.): laser read-out strip dry at 0 V, \rightarrow 200 V \rightarrow 200 V, **humid** (humidity > 60 %) \rightarrow 500 V, dry at 500 V, \rightarrow 200 V ອ150^{×10³} ອ [<mark>ଚ</mark>150^ ଅ <u>×</u>10³ strip read out rear-side read out rear-side read out strip read out 100 100 50 50 0 humid -50 humid -50 ---· dried@0V dried@0V dried@500V -100 -100 dried@500V DC coupling, 0 Gy DC coupling, 1 MGy -150<u>-</u>100 -150 -100 -50 50 50 n 50 -50 -50 -50 0 50 n 0 **x [µm] x [µm]** x [µm] x [µm] dried@500 V dried@0 V humid dried@500 V dried@0 V humid 0 Gy0 Gy0 Gy1 MGy 1 MGy 1 MGy N_e^c $128\,000$ 129000 $53\,000$ 109 000 0 $123\,000$ N_{e}^{e} $143\,000$ $145\,000$ 63000 $72\,500$ $9\,400$ $124\,000$ N_h $133\,000$ $64\,000$ $133\,000$ $121\,000$ $126\,000$ $112\,000$ 0.90 µm 1.83 µm - 0.18 µm 1.64 µm 0.77 μm 0.80 µm x_0 $(34 \ \mu m)$ $(6 \ \mu m)$ d_{acc} $34 \ \mu m$ 31 µm $36 \ \mu m$ $36 \ \mu m$ 2.7 µm $2.2 \ \mu m$ Si-SO2 interface region in p+n-silicon st 14.1µm 3.1 µm 2.1 µm 5.4 µm σ_{diff} 26 23rd RD50 Workshop, CERN, Geneva, Nov 2013 thomas.poehlsen@desy.de

A measurement of the point of zero-field for the sensor after 1 MGy x-ray irradiation

\Rightarrow Measured zero-field point 9 μ m below the SiO₂

(compatible with 7 μm according to simulations for N_{ox} = 10^{12} cm $^{-2}$)

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

TCAD simulations: electrostatic potential

a) 0 V, fix surface charge → 200 V
⇒ Longitudinal surface field
c) → 500 V, redistribute and fix surface
charge (0 V surface potential) → 200 V

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

The electric potential for different biasing histories

The electric potential for different biasing histories and different oxide charge densities

After 1 MGy of x-ray irradiation:

⇒ Oxide charge density: $1.4 \cdot 10^{12}/\text{cm}^2$ (+) ⇒ Interface state density: $1.6 \cdot 10^{12}/\text{cm}^2$ (?)

Implement in device simulations: $1 \cdot 10^{12}$ /cm²

- \Rightarrow The dependence on the biasing history is negligible
- ⇒ Electron losses are expected for all biasing histories

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

The electric potential for different biasing histories and different oxide charge densities

After 1 MGy of x-ray irradiation:obs \Rightarrow Oxide charge density: $1.4 \cdot 10^{12}/\text{cm}^2$ (+) \Rightarrow Interface state density: $1.6 \cdot 10^{12}/\text{cm}^2$ (?)Implement in device simulations: $1 \cdot 10^{12}/\text{cm}^2$ \Rightarrow The dependence on the biasing history is
negligible44 \Rightarrow Electron losses are expected for all
biasing histories44

- Observed losses are not fully reproduced by the simulation
- For some biasing histories the oxide charge is smaller than $1 \cdot 10^{12}$ /cm²
 - \Rightarrow Interface states give a significant negatively contribution

Due to positive oxide charge in the SiO_2 an electron accumulation layer forms and high electric fields are present.

Breakdown voltage of the sensor depends on

- Oxide charge (fixed oxide charge + charged interface states) depends on the radiation dose and crystal orientation
- oxide thickness
- humidity

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Sensor parameters

2 different p-on-n strip sensors are used showing similar results

Producer	Hamamatsu	CiS
Coupling	DC	AC
Full depletion voltage	155 V	63 V
n-doping	10 ¹² cm ⁻³	8 10 ¹¹ cm ⁻³
Pitch	50 µm	80 µm
Implant width	11 µm*	20 µm
Number of strips	128	98
Strip length	8 mm	7.8 mm
Thickness	450 μm	285 μm
Orientation	<111>	< 1 0 0 >
SiO_2 (+ Si_3N_4)	334 nm	300+50 nm

Fit results

	humid	dried@500 V	dried@0 V	humid	dried@0 V	dried@500 V
	$0 \mathrm{Gy}$	0 Gy	$0 \mathrm{Gy}$	1 MGy	$1 \mathrm{MGy}$	$1 \mathrm{MGy}$
N_e^c	128000	129000	53000	109000	0	123000
N_e^e	143000	145000	63000	72500	9400	124000
N_h	133000	64000	133000	121000	126000	112000
x_0	$0.90~\mu{ m m}$	$1.83~\mu{ m m}$	- 0.18 μm	$1.64~\mu{\rm m}$	$0.77~\mu{ m m}$	$0.80 \ \mu m$
d_{acc}	$(34 \ \mu m)$	$31~\mu m$	$36~\mu{ m m}$	$34 \ \mu m$	$36~\mu{ m m}$	$(6 \ \mu m)$
σ_{diff}	$2.7~\mu{ m m}$	$14.1 \mu m$	$3.1 \ \mu m$	$2.2~\mu{ m m}$	$2.1 \ \mu m$	$5.4~\mu{ m m}$

λ	830 nm	660 nm
N_e^c	49 000	0
N_e^e	73 000	$9\ 400$
N_h	108 000	126000
x_0	$-1.93 \ \mu m$	$0.77~\mu{ m m}$
d_{acc}	$34.7~\mu\mathrm{m}$	$36~\mu{ m m}$
σ_{diff}	$1.2~\mu{ m m}$	$2.1 \ \mu m$

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Thomas Pöhlsen

thomas.poehlsen@desy.de

The weighting potential is constant along the accumulation layer.

Time development of charge losses after irradiation (1 MGy)

 $0 \text{ Gy} \rightarrow 1 \text{ MGy} (\rightarrow \text{ positive oxide charges & interface states}):$

- 2. No obvious scaling for dry \leftrightarrow humid \leftarrow interface states?

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Thomas Pöhlsen

thomas.poehlsen@desy.de

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Thomas Pöhlsen thomas.poehlsen@desy.de 39

Inter strip capacitance as a function of bias voltage

Laser operation in burst mode

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Thomas Pöhlsen

thomas.poehlsen@desy.de

Saturation of charge losses

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013

Recovery of charge losses

- after \geq 50 µs : charge losses fully recovered
- for shorter recovery times: less charge losses
- large fraction of charge losses recover < 1 μs

Charge collection measurements Transient current technique (TCT)

Transient-Current-Technique (TCT): time-resolved current pulses are recorded I(t)

TCT setup for pad diodes

(TCT Setup 4)

front contact: needle

red and infrared lasers Peltier cooling, dry air digital oscilloscopes

multi channel TCT

used for strip sensors front contacts: wire bonds position scans (µm precision)

Si-SO2 interface region in p+n-silicon strip sensors, 23rd RD50 Workshop, CERN, Geneva, Nov 2013