

T-CAD simulation of Lorentz angle

Andreas Nürnberg

W. de Boer, A. Dierlamm, R. Eber, Th. Müller 23rd RD50 Workshop, CERN, November 14, 2013

Institut für Experimentelle Kernphysik

Motivation

- Distribution of electric field in sensor is important for understanding radiation induced damage
- Lorentz angle changes with irradiation fluence

It would be great to have a simulation describing fluence dependence, especially since every tracker layer will accumulate different fluence

Measurement principle

- Illuminate backside of silicon strip sensor with a short laser pulse in a magnetic field
- Drifting charge is deflected by the Lorentz force
- Measure shift as a function of the magnetic field and applied bias voltage

3

T-CAD simulation of drift in B-field

- Transient simulation of induced signals on AC coupled strips
- 880nm laser wavelength
 - Simulated electron density at three time steps

- Charge is created at the sensor backside
- Deflection due to Lorentz force

Andreas Nürnberg Institut für Experimentelle Kernphysik, KIT

Induced current

- Drifting charge induces current in ac readout strips
- Integrate pulse to obtain charge signal per strip
- Perform same analysis as for measured data
 - Charge position from gauss fit
 - Calculate shift by comparing to 0T reference point

23rd RD50 Workshop, CERN November 14, 2013

Andreas Nürnberg Institut für Experimentelle Kernphysik, KIT

Results (non-irradiated)

Magnetic field [T]

- Lorentz shift rises with B-field
- Shift is larger for electrons compared to holes
- General trend is reproduced by simulation
 - Deviations for electrons above 4T

Bias voltage

- Lorenz shift depends on bias voltage
- Behavior of electrons reproduced nicely

Irradiation model

- Include defects in simulation
- Effective trap models
 - 2-trap model for proton irradiation (R. Eber, PhD thesis)
 - Developed for Synopsis T-CAD
 - Describes TCT and CCE correctly (with Synopsis T-CAD)
 - 5-trap model (Univ. Delhi)
- Study influence on charge carrier drift and Lorentz angle

Comparison to measurement

Testing different irradiation models

Proton irradiated micron FZ sensors

- Models do not describe fluence dependence of Lorentz shift correctly
- Models give different shape of E-field than in Synopsis
- Tuning with Silvaco necessary

Summary

- Silvaco T-CAD simulation of silicon strip sensor including B-field
- Describes measurements on non-irradiated sensors
- This opens door for combination with effective trap models describing radiation damage
- Ongoing work to adapt and refine damage model to describe Lorentz angle measurement performed with laser method

BACKUP

Andreas Nürnberg Institut für Experimentelle Kernphysik, KIT 23rd RD50 Workshop, CERN November 14, 2013

11

2 trap model

- PhD thesis Robert Eber
- Effective irradiation model (tuned especially for proton irradiation)
- Tuned with Synopsis T-CAD

2 traps

- 1 donor
- 1 acceptor

Parameter	Donor	Acceptor
Energy	E _V + 0.48eV	E _C - 0.525eV
Concentration (cm ³)	5.598 * F - 0.959e14	1.189 * F + 0.645e14
σ(e)	1.0e-14cm ²	1.0e-14cm ²
σ(h)	1.0e-14cm ²	1.0e-14cm ²