HPK ATLAS12A Endcap Mini Sensors Electrical Testing

Marcela Mikeštíková¹, Víctor Benítez², Susanne Kuehn³, Urmila Soldevila⁴

¹Institute of Physics (Prague), ²CNM (Barcelona), ³Physikalisches Institute (Freiburg), ⁴IFIC (Valencia)

Tested sensors

ATLAS12A EndCap mini sensors manufactured by Hamamatsu Photonics (HPK) *n*-strip in *p*-type material (FZ)

10 different types of EC mini sensors at each participating institute:

EC-small pitch-C (AC gang) #P7

EC-small pitch-E (AC gang) #P8

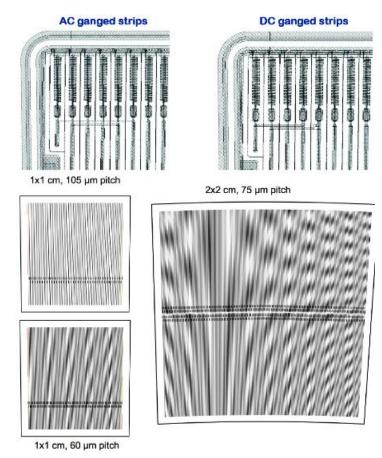
EC-large pitch-C (AC gang) #P9

EC-large pitch-E (AC gang) #P10

EC-small pitch-C (DC gang) #P17

EC-small pitch-E (DC gang) #P18

EC-large pitch-C (DC gang) #P19


EC-large pitch-E (DC gang) #P20

EC-skewed-C #P01

EC-skewed-E #P02

3 barrel mini sensors for comparision (PRG):

BZ3C #P2,4,12 W619

Status of endcap mini sensors I

Albert-Ludwigs-Universität Freiburg

Distribution and irradiation of EC mini sensors:

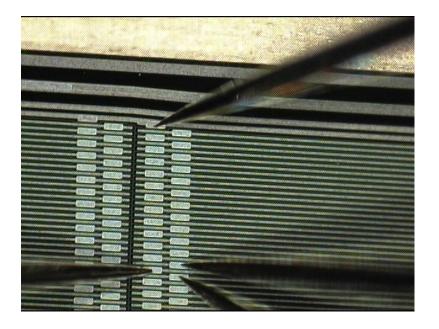
Unirradiated sensors (measurements done):

-10 unirradiated sensors at each participating institute Prague, Valencia and Freiburg for testing.

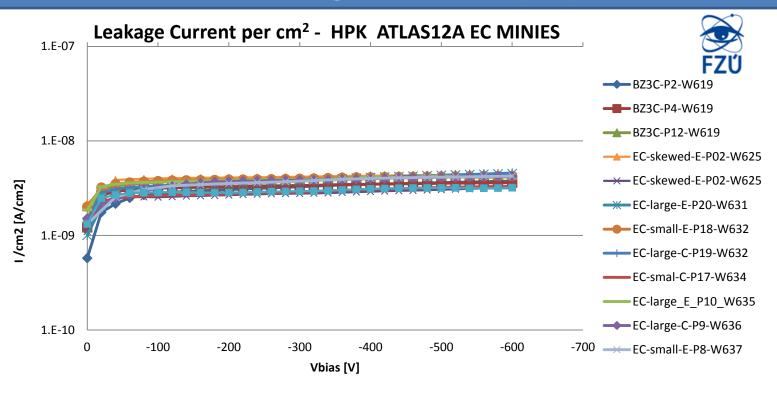
Results of testing are presented in this talk

Irradiatiated sensors (will be tested soon):

- 60 sensors were irradiated in Birmingham with protons:
 3 fluences (2 sensors of each type): 5E14, 1E15, 2E15 Neq/cm2
 Sensors will be distributed to Prague, Valencia, Freiburg for testing
- 30 were sent for gamma irradiation to BNL: proposed doses: 1MRad, 3MRad, 10MRad with 2 sensors per dose. Only sensors with ganging and small pitch (#7,#8,#17,#18,#21)
- -12 sensors were sent to Karlsruhe Synchrotron for irradiation with protons for comparison to irradiation in Birmingham:
 - 3 fluences (1 sensors of type #7,#8,#17,#18): 5E14, 1E15, 2E15 Neq/cm2


Electrical properties

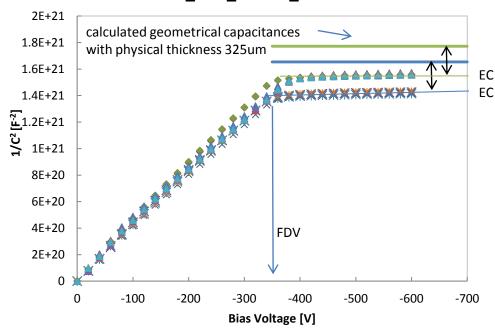
Measurements done up to now:


Non-irradiated sensors

- IV, CV characteristics, determination of Full Depletion Voltage
- Ccpl: AC Coupling Capacitance
- Rbias: Polysilicon Bias Resistance
- Cint: Interstrip Capacitance
- Rint: Interstrip Resistance
- PTP: Punch-through Protection

Comparison to specifications between ATLAS and HPK

Leakage Current (IV)


- No breakdown observed up to 600 V/1000 V sensor bias.
- Current @ 600 V (Prague and Freiburg):
 - 4.2 ± 0.3 nA/cm² EC
 - 3.4 ± 0.7 nA/cm² EC (skewed)
 - 3.8 ± 0.1 nA/cm² Barrel
 - 6.9 \pm 0.8 nA/cm² EC (Valencia)

Active areas used: EC mini: 0.69 cm2 EC skewed: 3.1 cm2

Barrel mini: 0.637 cm2

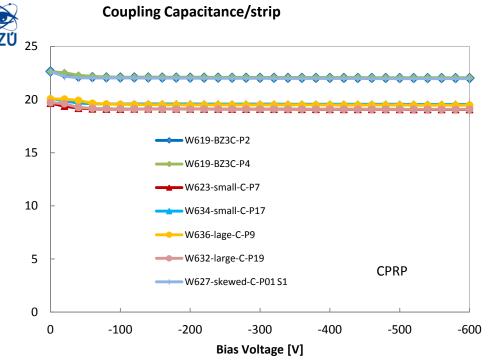
Full Depletion Voltage

CV_HPK_ECmini_ATLAS12A

- Estimated values of FDV:
 - Freiburg 330.5 ± 7.3 V
 - Prague 361.8 ± 15.6 V
 - Valencia 363.3 ± 18.4 V

EC large pitch different active area

Bulk Capacitance


The discrepancy between measured and calculated geometrical capacitance is due to the depth of the deep-diffused ohmic contact in the back

• Resistivity: $\rho = 2.8 \pm 0.15 \text{ k}\Omega^*\text{cm}$

calculated from Full Depletion Voltage:

 $\rho=d^2/(2\epsilon^*\mu^*V_{FD})$, **d = 302 \mum** (active thickness)

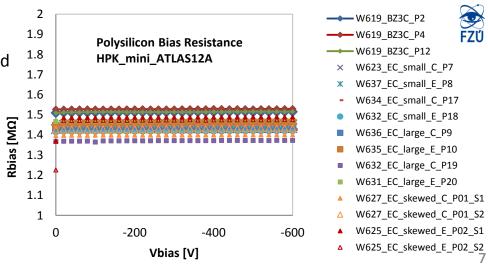
Coupling Capacitance/ Polysilicon Bias Resistance

Measuring method:

C_{cpl} measured between strip metal (AC pad) and strip implant (DC pad) at 1kHz with CR in parallel

- Summary Prague and Freiburg:
 - $-23.9 \pm 0.7 \text{ pF/cm EC}$
 - -25.0 ± 0.1 pF/cm EC(skewed)
 - 27.4 ± 0.03pF/cm Barrel
- Strip Ccpl agrees with Spec.

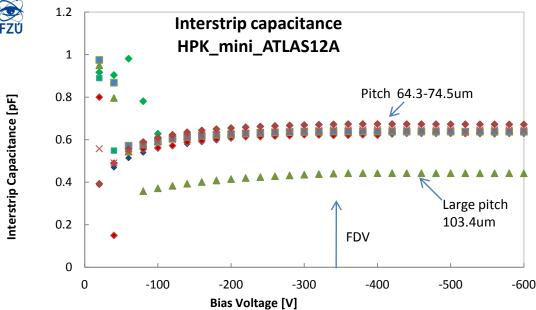
Strip length used: EC mini: 0.806 cm, EC skewed: 0.879 cm Barrel mini: 0.805 cm


Rbias measuring method:

- IV scan made by SMU up to 5V applied to DC pad
- Rbias=dVapp/dI

Coupling Capacitance [pF]

• Rbias is constant with bias voltage


Rbias = $1.45 \pm 0.04 M\Omega$

RD50 meeting, CERN Nov. 2013

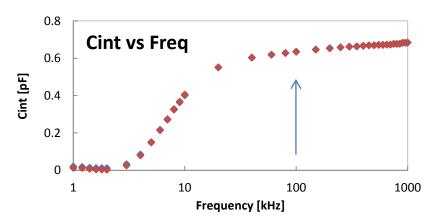
Inter-Strip Capacitance

- Measurements taken between the central strip and its neighbours on both sides 3 probe method
- Cint measured on randomly selected strips in the middle of the sensor (not ganged strips)

★W619-BZ3C-P2
 ★W619-BZ3C-P4
 ★W619-BZ3C-P12
 ■W623-EC-small-C-P7
 ■W634-EC-small-C-P17
 ▲W636-EC-large-C-P9
 ◆W627-EC-skewed-C-P01-S1
 ×W627-EC-skewed-C-P01-S2

 pitch [μm]

 -600
 Barrel mini
 74.5
 0.78


 EC Small pitch
 64.3
 0.79±0.003

 EC Large pitch
 103.4
 0.55±0.007

 EC Skewed
 69.4
 S2
 0.74±0.003

Average

Variable behavior at low bias may be due to effects near surface during depletion.

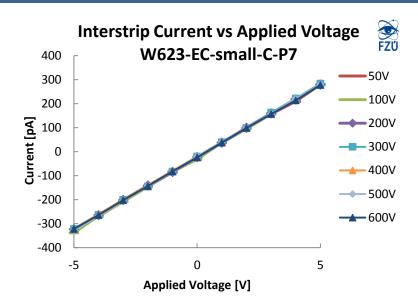
All tested sensors meet the Tech. Spec.

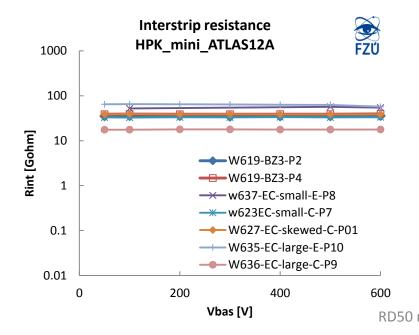
66.1 S1

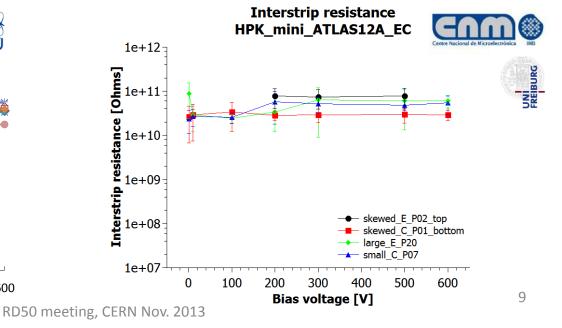
C_{int}/cm [pF]

0.76±0.004

Inter-Strip Resistance

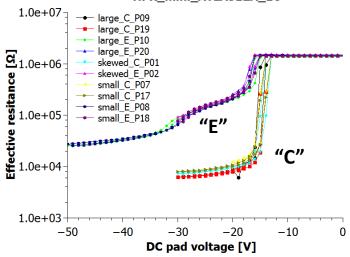

Measuring method:


- Interstrip resistance measured by induced current method.
- 3 adjacent DC pads are contacted with 3 needles. On the outer strips is applied voltage V_{appl} by SMU, the current is measured on the central DC strip.

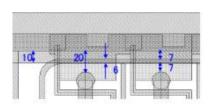

$$R_{int} = 2/(dI/dV_{appl})$$

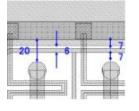
Summary from Prague and Freiburg:

- Interstrip resistance Rint/strip = 18-78 GΩ
- Rint is independent on Vbias
- Values in $G\Omega$ range agree with specifications.



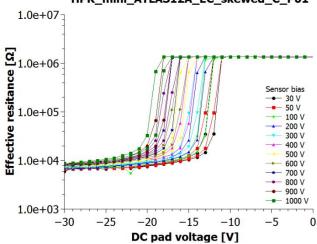
Punch-Through measurements

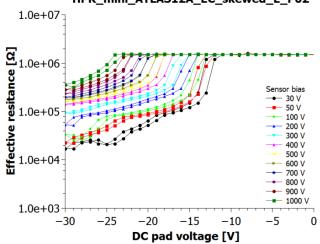



Sensors biased at -300 V.

$$V_{pT} = 15.4 \pm 1.2 \text{ V}$$

$$-$$
 R_{bias} = 1.4 ± 0.2 M Ω


- Clear difference between "E" and "C" label sensors, "Gate-effect" on PTP zone on "C".
- V_{pT} vs sensor bias dependance.
 - Bigger variation for "E"-standard PTP structures.



E

PTP measurements HPK_mini_ATLAS12A_EC_skewed_C_P01 1.0e+07

PTP measurements HPK_mini_ATLAS12A_EC_skewed_E_P02

Freiburg/ Prague/ Valencia Results

- All measured parameters meet specifications
- Measurement results of all tree labs are similar

	Tech. Specification	Measurement
Leakage Current	< 2 μA/cm2 at 600 V	4.8 ± 1.5 nA/cm2
Full Depletion Voltage	< 300 V (for 4KΩcm)	354 ± 20 V
Coupling Capacitance at 1kHz	≥ 20 pF/cm	23.9 ± 0.7 pF/cm EC 25.0 ± 0.1pF/cm EC Skewed 27.4 ± 0.03pF/cm Barrel
Poly Silicon Bias Resistance	1.5±0.5MΩ	1.45 ± 0.04 MΩ
Punch-Trough Voltage		15.4 ± 1.2 V
Interstrip Capacitance to neighbour pair at 100kHz	< 0.8 pF/cm	0.79 ± 0.003 pF/cm Small Pitch 0.55 ± 0.007 pF/cm Large Pitch 0.74/0.76 ± 0.003 pF/cm Skewed (Top/Bottom Segm.) 0.78 pF/cm Barrel
Interstrip Resistance	> 10x Rbias ~ 15 MΩ	18-78 GΩ

TT

Conclusions

Results up to now

- Electrical tests of 30 ATLAS12A EC mini sensors were performed in Freiburg, Prague and Valencia.
- Measurement results of all tree labs are similar.
- No breakdown was observed up to 600V/1000V sensor bias, leakage current more than 400x lower than Spec.
- Full Depletion Voltages of tested ATLAS12A sensors were found to be 340-380V which is higher than Spec. requirement < 300V assuming resistivity $> 4k\Omega$ cm.
- Inter-strip capacitance and resistance as well as coupling capacitance and bias resistance satisfy Spec. for non-irradiated sensors.
- Much more better PTP performance for new PTP structure "C" with gate than with no gate "E"

Next steps

- Measurements of non-irradiated sensors will be continued for data verification.
- The same electrical tests of irradiated sensors by protons (5E14, 1E15, 2E15 Neq/cm2) and gamma (1, 3, 10 MRad) will be done to evaluate radiation damage (IV, CV, Cint, Rint, PTP).
- Laser tests about charge distribution in ganging region using ALIBAVA readout before/after irradiation and CCE tests with ALIBAVA readout before/after irradiation are foreseen.

Backup

- Freiburg measurement setups
 - Coupling capacitance
 - Interstrip capacitance
 - Interstrip resistance
 - PTP measurement
- Prague measurement details

Coupling capacitance measurement

HP4284A

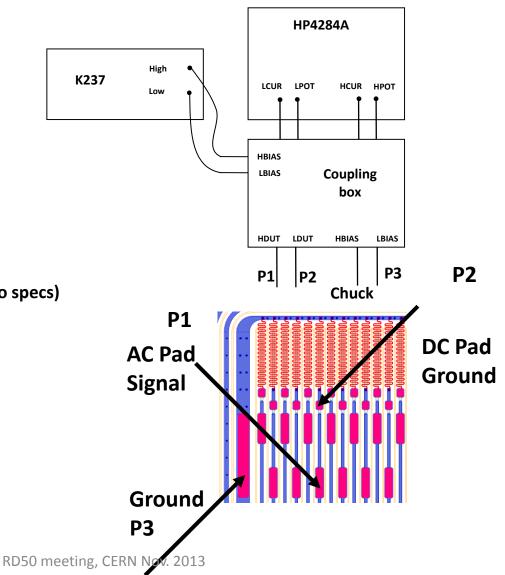
Signal bias: 0 V

Frequency: 1 KHz

Model: Parallel CR

Signal level: 100 mV (no specs)

K237


Voltage sweep: 0 V to -600 V

Voltage step: 1 V (no specs)

Current compliance: 200 uA (no specs)

Expected value:

C_{coupling} > 20 pF/cm

Interstrip capacitance measurement

HP4284A

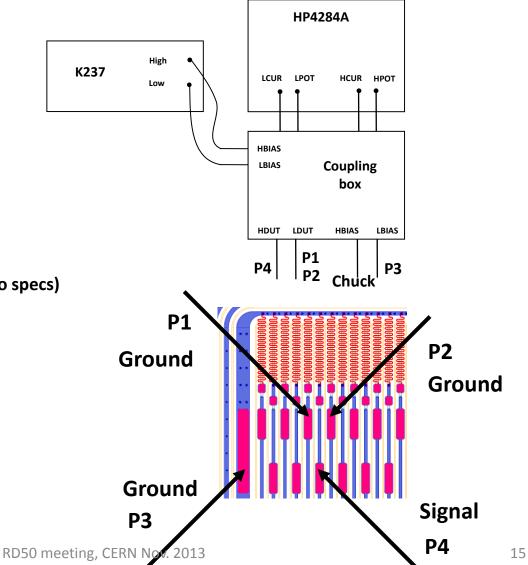
Signal bias: 0 V

Frequency: 100 KHz

Model: Parallel CR

Signal level: 100 mV (no specs)

K237


Voltage sweep: 0 V to -600 V

Voltage step: 1 V (no specs)

Current compliance: 200 uA (no specs)

Expected value:

C_{interstrip} < 0.8 pF/cm @ 300 V

Interstrip resistance measurement

K2410 (Sensor bias)

Voltage values: 1 V to 600 V

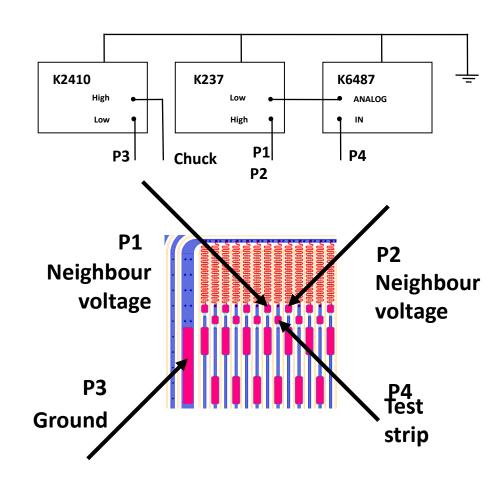
Current compliance: 200 uA

K237 (Neighbour voltage)

Voltage sweep: -1 V to 1 V

Voltage step: 0.1 V

Current compliance: 10 uA

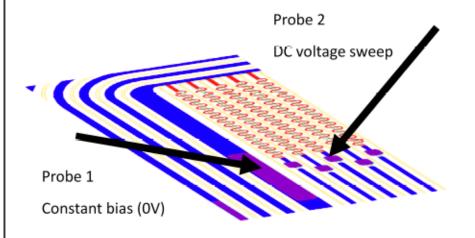

K6487 (Test strip)

Measurement range: up to 2 nA

Read ratio: Slow

Expected value:

R_{interstrip} > 15 MOhms @ 300 V



PTP measurement

Albert-Ludwigs-Universität Freiburg

- Room temperature ≈ 22 °C
 - Constant and variable bias (K2410):
 - Vchuck = -300 V / 0 V to -1000 V
 - Vbias = 0 V

Measure bias leakage current (200 uA compliance)

- DC voltage sweep (K237):
 - Vdc = 0 V to -35 V
 - 1 V steps

Measure leakage current at DC pad (200 uA compliance)

Vtest = Vdc-Vbias Reff= ΔVtest/ΔIdc |Idc| ≈| Ibias|

2013.11.07

University of Freiburg - AUW 2013

13

Prague measurement details

- Temperature 21-22°C
- Humidity 30-35%
- 20V step from 0V to 600V
- Equipment:
 - SMU: K237
 - precision LCR meter: HP4284A
 - electrometer/ voltage source: K6817A
 - multimeter HP34401A for measurement of resistivity of temperature chip PT100 which is connected with chuck.
 - Picoammeter/ Voltage source: K487
 - HV source: K248
 - probestation CarlSuss P200

- IV and CV:
 - 10s delay between measurements = stabilization
 - LCR: at 1kHz with CR in SERIES
- Cinterstrip
 - 6s delay between measurements
 - LCR: at 100kHz, CR in PARALLEL
- Ccoupl:
 - 6s delay between measurements
 - LCR: at 1kHz, CR in PARALLEL
- Rinterstrip:
 - K248 (Sensor Bias: 50V, 100V, 200V, 300V, 400V,500V)
 - K237 (Neighbour voltage: -5V to +5V, Voltage step 1V)
 - K487 (Test Strip)

measuremet range 2nA