Introduction à la détection de particules

▷ Introduction

- ► Principes
- ► Interactions particule matière

▷ Les détecteurs et illustration avec AMS

- ► Trajectomètre
- ► Temps de vol
- ► Identification de particules (RICH, TRD)
- ► Calorimétrie

S.Rosier Lees (LAPP-IN2P3/CNRS)

Bibliographie: P.Puzo Ecole de Joliot Curie, L.Serin et C.Joram (Ecole du Cern 2002); +ref internes, Daniel Decamp, Conférence Amhi pout tous, 2012

Introduction - Principes

▷ Identifier les particules

- ► Masse M (eV/c^2)
- ► Charge Q (Ze)
- ► Le signe de la charge
- ► Durée de vie (s)
- Modes de désintégration

Introduction - Principes

- Mesurer de manière complémentaire leurs caractéristiques:
 - ► Charge Ze et signe

• Energie E (eV)
$$E = m_0 \gamma c^2$$

- Impulsion **p** (eV/c) $p = m_0 \gamma \beta c$
- Vitesse (β) ou facteur de Lorentz (γ)

$$\beta = \frac{v}{c}$$
 $(0 \le \beta < 1)$ $\gamma = \frac{1}{\sqrt{1 - \beta^2}}$ $(1 \le \gamma < \infty)$

$$E^2 = \vec{p}^2 c^2 + m_0^2 c^4$$

Intéraction particule-matière > Particules chargées

Energie cinétique de la particule incidente est perdue par interaction électromagnétique avec les électrons ou le noyaux du détecteur traversé (M, \vec{u})

$$\left(E = \hbar \,\omega, \, \vec{p} = \hbar \, \vec{k}\right)^{\theta}$$

- Ionisation: si l'énergie de la particule incidente est élevée, les électrons de l'atome peuvent être arrachés => détection de charge électrique
- Excitation de l'atome (atom*-> atom + γ) qui en se
 désexcitant va réémettre de la lumière => détection de lumière
- + Rayonnement de freinage, une particule (légère) va rayonner un photon dans le champ coulombien du noyau => détection de lumière
- Emission de Photon pour les particules très relativistes (ex effet Tcherenkov, rayonnement de transition)
 => détection de lumière

Intéraction particule-matière ▷ Particules **chargées**

Energie cinétique de la particule incidente est perdue par interaction électromagnétique avec les électrons ou le noyaux du détecteur traversé (M, \vec{v})

$$\left(E = \hbar \,\omega, \, \vec{p} = \hbar \, \vec{k}\right)^{\theta}$$

►Ionisation: si l'énergie de la particule incidente est élevée, les électrons de l'atome peuvent être arrachés => détection de charge électrique

- Excitation de l'atome (atom*-> atom + γ) qui en se
 désexcitant va réémettre de la lumière => détection de lumière
- + Rayonnement de freinage, une particule (légère) va rayonner un photon dans le champ coulombien du noyau => détection de lumière
- Emission de Photon pour les particules très relativistes (ex effet Tcherenkov, rayonnement de transition)
 => détection de lumière

Energie perdue par ionisation

Formule de Bethe – Bloch énergie moyenne perdue par unité de longueur (dE) sur une épaisseur dx, par ionisation

$$\left\langle \frac{dE}{dx} \right\rangle = -4\pi N_A r_e^2 m_e c^2 z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2}{I^2} T^{\max} - \beta^2 - \frac{\delta}{2} \right]$$

- \triangleright dE/dx en MeVg⁻¹cm²
- ▷ Proportionnel à z²(charge de la particule) et Z/A(détecteur)
- \triangleright dE/dx dépend essentiellement de β

Perte d'énergie par ionisation

- ▷ I) dE/dx décroissante ▷ ▷ $\beta^{-3/5}$
- ⊳ II) Minimale pour
 - $\blacktriangleright \beta \gamma \approx 3-4$
 - $dE/dx \approx 1-2 \text{ MeVg}^{-1}\text{cm}^2$
- III) remontée
 relativiste :contributions
 de plus d'interactions
 - ► 2log(γ)
- IV) remontée relativiste
 limitée par un terme
 d'écrantage (δ) propre au
 milieu

Illustration: Identification de particules

Mesures croisées de l'énergie d'ionisation et de l'impulsion => Separation et identification des particules (Masse) à basse impulsion

Illustration: Identification des noyaux

L'énergie perdue par ionisation est proportionnelle à z^2

Intéraction particule-matière > Particules chargées

Energie cinétique de la particule incidente est perdue par interaction électromagnétique avec les électrons ou le noyaux du détecteur traversé (M, \vec{u})

$$\left(E = \hbar \,\omega, \, \vec{p} = \hbar \, \vec{k}\right)^{\theta}$$

- Ionisation: si l'énergie de la particule incidente est élevée, les électrons de l'atome peuvent être arrachés => détection de charge électrique
- Excitation de l'atome (atom*-> atom + γ) qui en se
 désexcitant va réémettre de la lumière => détection de lumière

►+ Rayonnement de freinage, une particule (légère) va rayonner un photon dans le champ coulombien du noyau => détection de lumière

Emission de Photon pour les particules très relativistes (ex effet Tcherenkov, rayonnement de transition)
 => détection de lumière

Intéraction particule-matière

▷ Particules « légères » chargées (e+,e-)

 E<Energie Critique la particule incidente laisse un sillage d'ionisation

E>Energie Critique la particule "génère" une gerbe de particule par rayonnement de freinage et perd son identité

Intéraction particule-matière

▷ Particules « légères » chargées (e+,e-)

Longueur de radiation X₀ (g/cm²) distance au bout de laquelle l'énergie est diminuée d'un facteur e

Intéraction particule-matière ▷ Particules **chargées**

Energie cinétique de la particule incidente est perdue par interaction électromagnétique avec les électrons ou le noyaux du détecteur traversé (M, \vec{v})

$$\left(E = \hbar \, \omega, \, \vec{p} = \hbar \, \vec{k}\right)^{\vartheta}$$

Emission de Photon pour les particules très relativistes (ex effet Tcherenkov, rayonnement de transition) => détection de lumière

 Excitation de l'atome (atom*-> atom + γ) qui en se désexcitant va réémettre de la lumière => détection de lumière
 Excitation de l'atome (atom*-> atom + γ) qui en se désexcitant va réémettre de la lumière => détection de lumière
 + Rayonnement de freinage, une particule (légère) va rayonner un photon dans le champ coulombien du noyau => détection de lumière

Scintillation

atome*-> atome + γ

- Emission d'un photon dans l'UV
- ▷ Les inorganiques
 - Cristaux ou Gaz rares (Liquide)
 - Grande amplitude mais lents
 =>Calorimétrie
- ▷ Les organiques
 - Liquide (toluene) ou scintillateurs plastiques
 - ► Faible amplitude (petit Z, C ou H) mais rapide
 - =>système de déclenchement

Intéraction photon (γ)-matière

Pour être détecté, le photon doit créer des particules chargées et/ou transférer de l'énergie à des particules

► Effet photoéléctrique (electrons de la couche k)

 γ + atome \rightarrow atome⁺ + e⁻

Diffusion Compton (diffusion d'un phton sur un e)

 $\gamma + e \rightarrow \gamma' + e'$

Création de paires
 Champ coulombien du noyau ou e

Intéraction photon (γ)-matière

Pour être détecté, le photon doit créer des particules chargées et/ou transférer de l'énergie à des particules

- Effet photoéléctrique
 E_γ<100 KeV
- Diffusion Compton $E_{\gamma} \approx 1 \text{ MeV}$
- ► Création de paires E_γ >1 MeV

Intéraction particule-matière > Particules chargées

Energie cinétique de la particule incidente est perdue par interaction électromagnétique avec les électrons ou le noyaux du détecteur traversé

$$(M, \vec{v})$$

$$(E = \hbar \, \omega, \, \vec{p} = \hbar \, \vec{k})$$

 \sim

- Ionisation: si l'énergie de la particule incidente est élevée, les électrons de l'atome peuvent être arrachés
 > détection de charge électrique
- Excitation de l'atome (atom*-> atom + γ) qui en se
 désexcitant va réémettre de la lumière => détection de lumière
- + Rayonnement de freinage, une particule (légère) va rayonner un photon dans le champ coulombien du noyau => détection de lumière

Emission de Photon pour les particules très relativistes (ex effet Tcherenkov, rayonnement de transition)
=> détection de lumière

Résumé des interactions avec la matière

Interaction des hadrons- de nombreuses cascades de particules produites, longueur d'absorption Λ

Imagerie Cherenkov (anneau)

 Un rayonnement Cherenkov est émis quand une particule chargée traverse un milieu diélectrique avec une vitesse β supérieure à la vitesse de la lumière dans le milieu :

$$\frac{v}{c} > \frac{1}{n} \implies \beta > \beta_{seuil} = \frac{1}{n}$$
 n: indice du milieu (n > 1)

 L'émission a lieu sur un cône d'angle au sommet θ_c tel que :

$$\cos(\theta_c) = \frac{1}{n\beta}$$

 Se produit dans tous les milieux transparents, y compris les scintillateurs, mais 100 fois plus faible que la scintillation

Lumière Cherenkov des gerbes atmosphèriques

Gamma rays on ground: Imaging Air Cerenkov Telescopes

Complete coverage of the sky: galactic and extragalactic sources

Operating since 2007

Rayonnement de transition – particule relativiste

- Un « rayonnement de transition » est émis lorsqu'une particule chargée traverse un milieu présentant une discontinuité de l'indice de réfraction (ex : vide - diélectrique)
- Quelques calculs complexes d'électromagnétisme montrent que :
 - \square L'énergie W émise à chaque transition est $\propto \gamma$
 - ⇒ Dans la pratique, les e[±] sont les seules particules qui vont émettre un rayonnement de transition (⇒ identification !!)
 - Le nombre de photons émis à chaque transition est très faible (≈ 1/137)
 - ⇒ Il faut de nombreuses transitions d'où une « structure en sandwitch »
 - \square Le rayonnement est émis dans un angle θ \thickapprox 1 / γ
 - Les photons sont typiquement de l'ordre du keV

TRD - Rayonnement de transition

 Sandwitch de radiateurs et de détecteurs alternés

- Les radiateurs sont souvent des feuilles de CH₂ (faible Z car la réabsorption est ∝ Z⁵)
- Les détecteurs sont généralement gazeux (MWPC, straw tubes, ..) et utilisent des gaz lourds (Z élevé car le nombre de photo-électrons est ∝ Z⁵)
- Problème intrinsèque au détecteur
 - ⇒ Mettre un seuil élevé

CLOBEZ EL EL 🛨 - COL 🔊 DE DE

Autres interactions

Hadrons : interaction forte, entre les hadrons et les noyaux de la cible => production de fragments (∝log(E)), on définira alors une longueur d'interaction λ_I (g/cm²)

L'atmosphère détecteur : une particule primaire commune engendre sur sa trajectoire dans l'atmosphère une myriade de particules secondaires qui atteignent le sol en un laps de temps très bref pour apparaître comme simultanées dans les détecteurs.

Interaction des protons dans l'atmosphère

Une pluie de particules secondaires...

Les grandes gerbes atmosphériques se forment dans les hautes couches de l'atmosphère, à plus de 20 km d'altitu Les interactions dans la gerbe produisent: -Des fragments de noyaux -Des pions neutres → 2 gamma

-Des pions chargés → muon +neutrino

Au niveau de la mer, la pluie cosmique est constituée:

- principalement de muons d'énergie environ 1 GeV
- 2% de nucléons (proton ou neutron) résultant de

la fragmentation des noyaux.

-0,2% d'électrons et de positrons provenant

de muons qui se sont désintégrés

-0,04% de pions

Au niveau de la mer, une pluie d'environ 150 particules par m² et par seconde, Essentiellement des muons.

Cf exposé C.Bérat

Gerbe électromagnétique (e⁺, e⁻, γ) Gerbe hadronique; (principalement μ et neutrinos au niveau du sol)

Autres interactions

Neutrinos : interaction faible, généralement énergie manquante

Pour les détecter, il faut les faire interagir :

 $u_{\ell} + n \longrightarrow \ell^- + p \quad \text{avec} \quad \ell^- = e^-, \mu^-, \tau^ \bar{\nu}_{\ell} + p \longrightarrow \ell^+ + n \quad \text{avec} \quad \ell^+ = e^+, \mu^+, \tau^+$

Typiquement, les efficacités de détection sont de l'ordre de 10⁻¹⁷ dans 1 m de fer

 Les détecteurs spécialisés pour les neutrinos doivent être énormes et accepter de très haut flux

Overview of readout electronics

Needs time to decide to keep or not the event : memory

Structure globale d'un détecteur de physique des particules

Selon leur nature, les particules ont différentes signatures

Le détecteur Atlas

Construit autour du point de collision

Le détecteur Atlas

Le détecteur Atlas – Candidat Higgs

Le détecteur CMS – Candidat Higgs

Le détecteur CMS – Candidat Higgs

AMS- Principes

- Interaction des particules chargées avec la matière
 - ► Aimant + trajectometre
 - ► $mv/Z \propto R$ Rigidité
 - ► Z²
 - Signe de la charge
- Déclenchement et sens de passage de la/ particule
 - ► Mesure de temps
- > Identification des particules
 - ► Noyaux (Z, M)
 - Particule electromagnétique
 - ► Séparation e/p

Un détecteur de physique des particules dans l'espace

16th of May Launch + 8 s – KSC Cape Canaveral

16 Mai 2011 1.5 après le lancement

19 Mai 2011 AMS va etre installé sur I ISS

AMS Activation – 19 mai , 5:15

AMS sur la station spatiale internationale

AMS: A TeV precision, multipurpose spectrometer

Le détecteur AMS

Orbites ISS

ISS vitesse: 8km/s, une orbite en 90 mn

Altitude 340-400 km

Paramètres de l'acquisition des données

temps d'exposition [s]

Taux de Particles varie de 200 à 2000 Hz par orbite

En moyenne: DAQ efficacité 85% DAQ taux ~700Hz

AMS Flot de données

Science Operations Centers (POCC, SOC) at CERN since June 2011

AMS Computers at MSFC, AL

Constraintes de l'espace

- Poids: 7 tonnes maximum
- (exp. LHC \sim 1000 tonnes)
- ▷ Faible consommation éléctrique: 2.4 kW
- ▷ Température: ± 50 °C, variation
- > Aucune assistance humaine redondance
- ⊳ Vide
- ▷ Resiter auxvibrations pendant le lancement
- => tests (radiation, thermique and vibration)

Variations de temperature calorimètre

La mesure de la charge electrique des particules

 \Rightarrow Le signe de la charge est obtenu par le sens de courbure dans un champ B

La mesure de la charge électrique des particules

Pour une particule non relativiste :

$$rac{dec{p}}{dt} \;=\; q\,ec{v} imesec{B} \;=\; rac{q}{m}\,ec{p} imesec{B}$$

□ La particule tourne autour de *B* à la fréquence cyclotron ($\omega_B = qB/m$)

Pour une particule relativiste :

$$rac{dec{p}}{dt} = q \, ec{v} imes ec{B} = rac{q}{\gamma \, m} ec{p} imes ec{B}$$

□ La particule tourne autour de *B* à la fréquence ($\omega_B = qB/\gamma m$)

- Tr 🔹 Dans le plan transverse au champ B, la trajectoire est circulaire
 - Le sens de la courbure donne la charge

La mesure de la charge électrique des particules

Ex : s=3.75 cm for $p_T=1$ GeV/C,L=1m and B=1T

Effets du champ magnétique terrestre

Temps de vol (scintillation et ionisation)

Temps de Vol

Mesure:

- Reconstruction de la trace en 9 points
- Rigidité P/Z jusqu'à qq TV
- \triangleright dE/dx \propto à Z²

Direction and energie des photons

convertis

Détecteur de ké silicium

Plans I et 9 sont hors champ magnétique

AMS Event Display

Run 1306071428/ 473800 Sun May 22 15:42:56 2011

Noyau d'Hélium

Candidat Bore

Particle TrTofTrdTrdHEcal No 0 Id=65 p= 16± 0.44 M= 9.67± 1.4 θ=3.06 φ=4.76 Q= 5 β= 0.856± 0.033/ 0.86 Coo=(26.89,39.64,53.05) LiveTime 0.70 IdShower No 0 NHits 38 Energy= 5.73± 0.24 θ=3.04 φ=-1.67 Coo=(27.41,20.78,-151.14) χ²= 1.02 Asymm=-0.06 Leak

Trajectomètre (ionisation)

▷ Principe

- 2500 senseurs microstrip en silicium double face,
- Mesure des deux coordonnées avec un seul detecteur et en minimisant la matière en amont du calorimètre avec une précision de qq microns

Trajectomètre

⊳ 2 échelles

▷ 9 plans, 200 000 canaux

CMS, beaucoup plus gros !

Trajectometre – reconstruction

La distribution de ΔX est ajustée avec une double gaussienne **Resolution =** 10 μ m

Précision sur l'alignement

Variation des températures peuvent induire des déformations des structures et déplacements de 100 microns !

Procédure d'alignement se fait avec les données (protons) pour les plans externes

Mesure de la Rigidité = Impulsion/Z

Protons

	Inner	L1	L9	L19
p	240 GV	540 GV	750 GV	2000 GV
He	400 GV	1100 GV	1600 GV	3200 GV

Valeur de la rigidité avec 100% d'erreur relative sur la mesure Appelée :*maximum detectable rigidity* (MDR)

Mesure de la charge avec AMS

Mesure du rapport B/C – Fragmentation mesurée dans le détecteur

Identification de la charge avec ToF, Tracker

Protons- Comparaison avec les mesures précédentes

Ams-02 Helium flux Comparaison avec les mesures précédentes

Imagerie Cherenkov (anneau)

▷ Vitesse et mesure de la charge

RICH – Mesure de la charge

Ring Imaging Cerenkov -RICH

Dual solid radiator configuration

	Aerogel	NaF
Refraction Index	1.05	1.33
Opening angle (deg)	17.8	41.5
Velocity threshold	0.952	0.752

Photomultiplier matrix 10880 pixels

Ring Imaging Cerenkov

▷ Integration at Cern

RICH – Mesure de la charge (z^2)

RICH – mesure de la vitesse (β)

Resolution per hit is the same for direct and reflected hits

72
AMS data: Noyaux domaine du TeV

TRD - Rayonnement de transition

 Sandwitch de radiateurs et de détecteurs alternés

- Les radiateurs sont souvent des feuilles de CH₂ (faible Z car la réabsorption est ∝ Z⁵)
- Les détecteurs sont généralement gazeux (MWPC, straw tubes, ..) et utilisent des gaz lourds (Z élevé car le nombre de photo-électrons est ∝ Z⁵)
- Problème intrinsèque au détecteur
 - ⇒ Mettre un seuil élevé

CLOBEZ EL EL 🛨 - COL 💊 DE O

Détecteur à radiation de transition

Configuration pour 60 cm de hauteur: 20 couches :22 mm mousse fibre Ø 6 mm straw tubes remplie Xe/CO₂ 80%/20%

12 couches dans le plan de courbure 2 x 4 couches dans l autre vue

TDR – résultats Tests Faisceaux

Calorimètre Electromagnétique

- Méthode destructive de mesure de l'énergie totale par absorption de la particule incidente à travers une suite de collisions inélastiques qui vont dégrader son énergie
 - $\square \Rightarrow$ formation de gerbes électromagnétiques ou hadroniques
 - L'énergie est convertie en excitation de la matière ou ionisation
 - Réponse du détecteur liée à l'énergie E
- On appellera absorbeur le milieu qui déclenche la gerbe

120 GeV photon

Unique Features: 17 X_0 , 3D ECAL, measure γ to 1 TeV, time resolution of 1 μ sec

Calorimetre electromagnetique

3D imaging calorimeter

Particle ID (e.m gerbes vs. cascades de hadrons) Mesure de l'énergie (e^+,e^-,γ) (=> 1TeV) systeme de déclenchement

ECAL: le dernier des détecteurs où les particules e.m vont "mourir"

Calorimètre Electromagnétique

3D reconstruction de la gerbe en 3 dimensions

Calorimetre à échantillonnage: asborbeur et detecteur sont differents
Pb/ fibres scintillantes structure

volume ratio Pb:fibres:glue : 60:34:6dimensions : $658 \times 658 \times 166.5$ mm³ poids : 498 kg

• 9 "Supercouches" (>16 X0, 1 lambdaI)

10 000 fibres

Système de collection de lumière

ECAL Construction

performance

Précision sur la mesure de l'énérgie

e/P rejection

- Sans notre galaxie, il y a au moins 10000 fois plus de protons quz d'electrons
- Pour la mesure des positrons il faut donc rejeter les protons qui simuleraient un positron

Simulation in Geant4

e/P rejection - ISS protons

3 Signatures de l'interaction des protons dans le calorimetre

٠

- I: Nuclear Interaction dans les premieres couches (~ 10-15 %)
- II: Nuclear interaction in les couches intermediaires zone (3:17)
- III: au minimum ionisant sur tout le calorimetre, 47-53 % of the proton events

e-/P rejection with ECAL

e+,e- Identification avec AMS

Proton rejection > 1/100000 => 3 détecteurs complémentaires

Energy (GeV)

AMS data: High energy e[±]

Proton rejection

Positron fraction

Positron fraction : comparaison des mesures

AMS-02 Electron Flux up to 500 GeV

Statistical errors only

AMS-02 Positron Flux =>to 350 GeV

Statistical errors only

Characteristics of AMS

$\Delta t = 100 \text{ ps}, \ \Delta x = 10 \ \mu m, \ \Delta v/v = 0.001$

Physics example	Cosmic Ray Physics				Dark matter		Antimatter 95
ECAL			Ŧ				₩
RICH			\rightarrow	\bigcirc			
Tracker	\mathcal{I}			八			ノ
TOF	Ŧ	Ţ	ř	т	Ŧ	T	4
TRD		Υ	7			*	7
	e -	Ρ	He,Li,Be,Fe	γ	e+	P, D	He, C

Le système de déclenchement AMS-02

