

View from the experimentalist:

Realization of relativistic light intensities with ultrafast TW-lasers for particle acceleration

Matthias Schnürer

Max Born Institute, Max Born Str. 2a, D-12489 Berlin, Germany

schnuerer@mbi-berlin.de

Outline

- Motivation
- Introduction: laser intensity @ interpretation of experimental data
- Energy measurement of ultra-short TW laser pulses
- Measurement of temporal pulse width
- Fokusing to relativistic intensities (wavefront errors and control)
- Direct measurements @ theoretical calculation of laser intensity
- Pulse synchronization of TW beamlines
- Ultra-high contrast of femtosecond laser pulses
- > Summary

Motivation: Driving aims and key problems in laser ion and laser electron acceleration

Ion energies:

- **several MeV** to tens of MeV - material research (structure analysis, device tests)

- energy dissipation in cold and dense warm matter

- dynamical imaging of strong fields

- biological application (stopping length between

microns and centimeter)

- **several 100 MeV** for protons - cf. above & medical application (stopping length between 0.1-1 meter)

Electron energies:

- *GeV* to several GeV - new type of electron accelerator

ultrafast XUV / X-ray radiation sources (up to FEL)

Tasks: (important for application)

parameter steering with light — offers new class of devices **parameter control** determines the competiveness of a new technology

Tasks: (scientific)

- study of *acceleration mechanisms*:

- ion /electron energy scaling inclusive staging
- laser to ion / electron energy transfer efficiency
- stability (robustness) of the process
- range of parameter steering (bandwidth of energies)

Introduction: Ion and Electron acceleration with lasers

Laser – high intensity: strong EM-fields – polarization of matter – strong acceleration fields (kind of rectification)

Electron acceleration

From electron acceleration via self-injection

To electron acceleration using electron injection

Introduction: ultrafast TW-laser systems for particle acceleration

synchronized

70 TW @ 35 fs

Dual Beam DCPA - system

Introduction: Importance of laser parameter – for evaluation of experiments

in plasma phenomena => collective effects matter

=> therefore several parameter energy, duration, intensity (released forces) of impact are important

quite different to laser – atom interaction

e.g.: ionization via inverse Bremsstrahlung absorption in a plasma versus field ionization of an atom

parameters are difficult to discriminate for plasma effects => cause problems in interpretation Example for laser-ion acceleration:

DLC, **I_L=5x10¹⁹ W/cm²** @ 45fs, 800nm, **0.7 J**MBI-HFL

Si₃N₄, **I**_L=2x10²¹ W/cm² @ 40fs, 800nm, **1.5** J

HERCULES

Dollar, PRL 208, 2012

Steinke, Laser Part. Beams, 28, 2010 Henig, PRL 103, 2009

What do we have to realize and to measure?

o simple formula, apparently well defined measures, but no real satisfactory and complete measurement solution for TW-pulses

o no device to do it in a practicable and defined way

- o why: nonlinear response, collective response, threshold of effects not sharp
- o even more awful: there is no standard method to do some kind of precise quantification for comparison of TW-lasers
- o different methods for approximation:
- single measurements of attenuated beams or beam parts and extrapolation
- effects on single particle (atom or electron) & using theoretical relations

Determination of laser pulse energy in case of TW-laser pulses

Direct measurement with "Joulemeter" not possible: => $I_{area\ detector} \sim 5*10^{11} - 10^{12}\ W/cm^2$ (safe region $\sim GW/cm^2$, at about $10^{10}\ W/cm^2$ ($\not O$ level) we observed nonlinear problems)

=> Determination of relative transmission of measurement lines (including attenuation)

Determination of laser pulse energy in case of TW-laser pulses

Measurement of temporal pulse width

technique	single pulse	multiple pulses, scanning
Autocorrelation 2 nd order	yes	yes
Autocorrelation 3 rd order	low dynamic range	yes

Spider yes

FROG yes

problems:

- dynamic range of temporal pulse profile
- no measurement with real focusing optics (practical issue)
- measurement across beam profile (practical issue)
- e.g. beam diameter demagnification with a telescope may generate pointing problem

other methods: measurement and control of angular chirp, phase front tilt c.f. e.g. A. Borzsonyi et al. Applied Sciences 3, 515 (2013)

Focusing to relativistic intensities – parabolic mirrors

Greek mathematician **Diocles** described them in his book *On Burning Mirrors*

Comparison of reflection from spherical and parabolic surfaces Drawing by Leonardo da Vinci, ca. 1510-1515

- unique property

large off-axis angles – large preforms => €\$

Fokussing to relativistic intensities (wavefront errors and control)

Final pulse compression in CPA-systems

can introduce easily spatial and temporal pulse degradation:

A. Borzsonyi et al. Applied Sciences 3, 515 (2013)

Fokussing to relativistic intensities (wavefront errors and control)

Focus problems due to imperfect LLNL-gratings:

a discrepancy of 0.5 lines/mm

degrades the focus at perfect parallel grating alignement

Reflection with flat bulk mirror

Reflection with AOM-system on

Chromatic far field distortion can not be compensated with an AOM-system

Solution: grating detuning for chromatic compensation

Fokussing to relativistic intensities (wavefront errors and control)

Relativistic intensity is given if $a_0 > 1$

$$a_0^2 = I [W/cm^2] \lambda^2 [\mu m^2] \times 0.73 \times 10^{-18}$$
,

the relativistically normalized laser vector potential -- relativistic effects of electron kinematics became apparent --

Example of different optimization steps including spectral divergence (grating alignment) and wave front (adaptive mirror) correction

focus issue:

- need well defined intensity distribution
- focus quality
- CPA systems
 with a grating compressor
 require simultaneous
 optimization of focus
 and temporal compression
 (compensation of
 slight grating mismatches)

Wave front control and focusing

example: f/70 focusing – exposure of high dynamic range CCD

120 mm diam deformable mirror for 100 TW beamline

Active Optics NightN Ltd. Adaptive Optics Group

DM2-120-48 [1-1-6-10-14-16]

> D1 = Ø16 D2 = Ø42 D3 = Ø67 D4 = Ø92 D5 = Ø119 R = 1.25 g = 0.8

Wave front control – deformable mirror

Feed-back to voltage control of AOM

B.C. Platt e.g. Journal of Refractive Surgery 17, S573 (2001)

corrected wave front with $\lambda/10$ RMS

improved focal distribution

Far field improvement of the MBI high field Ti:Sapph laser

with appropriate grating alignement and an adaptive optical mirror system

energy content determination with a f=4000 mm lens, focussed directly on a CCD: 27% diffraction limited (AOM-off) 50% diffraction limited (AOM-on)

with 100 TW Amplitude Laser System & AOM as it results from energy, pulse duration and focus measurements

OAP focal distance – 150 mm beam diameter – 90 mm energy on OAP: 1.9 J pulse duration: 30 fs encircled 2w_o - diameter 4.6 μm

diameter FWHM: 2.75 μm energy content within FWHM: 40 %

FWHM intensity: ~ 5 * 10²⁰ W/cm² Peak intensity: ~ 7 * 10²⁰ W/cm²

Focusing: coating degradation & intensity drop

example of coating degradation
after use with different target systems
~ few 10⁴ shots in ~ 4 years (single shot experiments)
~ 10⁶ shots in ~ 10 days (10 Hz rep. rate experiment)

energy content within FWHM

achieved best value so far: 40%

TR | 18

Focusing: coating degradation & intensity drop (comparison 2: same beam, same day, same AOM compensation)

f=150mm OAP 4"

20% E_L in FWHM ellipse 3.3 x 2.9 μ m² diff.lim.~ 2.5 μ m for HFL-MBI 1.4X x 10²⁰ W/cm²

X = 1 - 2 possible

f=150 mm OAP 4"

20% E_L in FWHM ellipse 4.3 x 3.1 μ m² diff.lim.~ 2.5 μ m for HFL-MBI X x 10²⁰ W/cm²

X = 1 - 2 possible

accuracy not satisfactory – problems: background, fluctuation, attenuation

Focusing: diamond turned parabolic mirrors

Focusing: comparison of used parabolic mirrors

Janos Technology metal, turned

Kugler GmbH metal, turned

Berliner Glas glass, polished

Zeiss, optical surfaces (lambda/10), SORL

Beamline mirrors: coating problems

coating destruction after first vacuum insertion

color centers in glass substrate due to few percent laser transmission of coating

- carbon contamination (of gratings / mirrors) - plasma- or UV- cleaning

Intensity expectations and reported values in experiments

better intensity determination (in the relativistic regime) would give a much better quality in data analysis

Focusing: high intensity, high field strength

- direct measurement?

consequences of field gradients:

- -> most important
 - ponderomotive potential

effects:

- ionization of atoms
- acceleration (scattering) of electrons / ions (atoms)
- radiation ofe.g. scattered electrons

consequences of intensity distribution:

-> extended regions of lower intensity produce

obstructive background signals in experiments

example plot: focused gaussian beam with $w_0 = 5$ beam waist parameter

Direct measurements @ theoretical calculation of laser intensity

laser interaction with single atoms

measurement of ionization stages

theoretical calculation of field ionization (ADK & relativistic corrections) gives relation between ionization rate and laser intensity

MBI- Thesis E.Gubbini 2005

Short Pulse Laser Interactions with Matter I(r)laser $\nabla E_{V}(r)$ Paul Gibbon Fig. 3.4 Schematic view of the radial ponderomotive force due to a focused beam. 45° 2J, 35 fs electron energy normalized counts and emission angle depend on ponderomotive 10⁴ potential

measurement of electron spectra

theoretical calculation of ponderomotively accelerated electrons gives relation between electron spectra and laser intensity MBI-LL experiment 2012: ~ 2 x 10²⁰ W/cm²

2500

Problems: count rate and volume effects

500

1000

1500

electron energy, keV

2000

Pulse synchronization of TW - beamlines

- Dual laser operation in different experiments
- Synchronized laser operation
 with newly developed (180 ns) delay unit

beamline

and

experiment setup for proton imaging

A simple method for beam (2 colors) synchronization

Ti:Sa t = 35 fsNd:glass t = 1 ps,time resolution" $\leq 1 \text{ ps}$

spectral interference

Ablation plasma

Shock

Ultra-high contrast of femtosecond laser pulses

the temporal contrast of the laser pulse is a critical issue

otherwise interaction with low density plasma at pulse peak

XPW - frontend

Principle cross-polarized wave generation

degenerated four wave mixing process in non-linear media

layout

Ultra-high temporal contrast - the plasma mirror technique

focused with f /2.5 Off-Axis Parabola (OAP)

 \rightarrow achievable intensities with MBI – HFL system ~ 5 x 10¹⁹ W/cm² – 2 x 10²⁰ W/cm² \rightarrow a₀ ~ 5 -10

Data from literature and qualitative comparison suggest $I_{pedestal} < 10^{-11} I_{peak}$ with XPW- frontend : $I_{pedestal} < 10^{-13} I_{peak}$

Plasma Mirror: technical realization

plasma mirror - coated substrates

.....

best with XPW-frontend

perfect shot series

degradation due to debris

damage of test coating Interaction with nm-thick foils: contrast > 10^{10} E ~ 0.7 J, 45 fs, I_{Lpeak} ~ 5 x 10^{19} W/cm²

Henig et al. PRL 2009 Steinke et al. LPB 2010

view inside: plasma mirror in vacuum chamber

Temporal contrast produced with a plasma mirror

Double plasma mirror at GIST – APRI (Korea) 3rd order correlation measurement I.J. Kim et al. APB104(2011)81

cf. other systematic work – Ch. Rödel Diploma 2009 FSU-Jena

Signatures of temporal contrast in experiments with nm-foils

Images of back-reflected light from target

Focus of a low-energy shot without plasma generation

high power shots

no DPM CR~5*10⁻⁸

DPM with glass CR~10⁻¹⁰

DPM with AR-coating $CR^{\sim}10^{-12}$.

Electron acceleration: experiment with radiation enclosure

enclosed magnet spectrometer experimental chamber long distance focusing

anticipated intensity with 70 TW on target & OAP f=2500

remote control of laser and experiment

Credits

F. Abicht, J. Bränzel, Ch. Koschitzki,

A.A. Andreev

M.P. Kalashnikov, U. Eichmann

L. Ehrentraut, G. Kommol, D. Rohloff, P. Friedrich, D. Sommer (engineering and technical staff)

G. Priebe (now XFEL-GmbH), S. Steinke (presently LBNL), P.V. Nickles (MBI / GIST Korea), T. Sokollik (presently Shanghai Jiao Tong University), T. Paasch-Colberg (MPQ)

S. Ter-Avetisyan (ELI-beamlines)

W. Sandner (Director MBI / Director General ELI-DC)

Transregio 18 collaboration:

MPQ / LMU München,

HHU Düsseldorf, FSU Jena

Summary

- experiments with ultrafast TW-lasers for laser-particle acceleration need careful parameter measurement, control/correction and dedicated optics for establishing relativistic intensities
- a reliable parameter determination (energy, intensity, contrast)
 being relevant for the interaction zone is of utmost importance for comparison
 of results from different experiments and analysis of complex laser-plasma interaction
- due to present technical and principal (anticipated unrealistic effort) problems, and the lack of a genuine method and/or calibration,
 the introduction of some standard "how to measure ..."
 agreements is desirable (my personal perception)