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This is NOT the approach 

we are going to take ! 



Plan of attack: 

• brief summary of matrix approach to light ray optics 

(Marta Divall’s talk at GANIL School also refers) 

  

• extension of ideas to CP optics 

 

• differences between light (L) and charged-particle (CP) 

optics 

• deviations from ideal beams in L and CP 

• some examples of similarities and differences 
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Light Ray Optics 

Each optical system will have an axis, and all light rays will be 

assumed to propagate at small angles to it (Paraxial Approximation) 

optical axis 

We define all rays relative to the relevant optical axis. 
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Ray Vector 

A light ray can be defined by two co-ordinates: 

xin  , qin 

xout  , qout 

position, x 

 

slope, q 

optical axis 

x 

q 

These parameters define a ray vector,           

which will change with distance as  

the ray propagates through  the optics. 

x

q

 
 
 
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Ray Matrices 

For many optical components, we can define 2 x 2 ray matrices. 

An element’s effect on a ray is found by multiplying its ray vector. 

Ray matrices 

can describe 

simple and 

complex systems. 

These matrices are often called ABCD Matrices. 

in

in

x

q

 
 
 

A B

C D

 
 
 

Optical system ↔ 2 x 2 ray matrix 

out

out

x

q

 
 
 
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Ray matrices as derivatives 

We can write 

these equations 

in matrix form. 

out in

out inD

B x

C

x A

q q

    
    

    

out
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q
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
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


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
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x

q





angular 

magnification 

spatial 

magnification 

out i
outout

i n

i

n i

n nx x
xx

x
q

q
 









out in i
outut

nin i

o
nx

x
q

q

q
q

q
 









Since the displacements and angles 

are assumed to be small, we can 

think in terms of partial derivatives. 
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For cascaded elements, we simply 

multiply ray matrices. 

3 2 1 3 2 1

out in in

out in in

x x x
O O O O O O

q q q

        
        

        

Notice that the order looks opposite to what it should be, 

but it makes sense when you think about it. 

O1 O3 O2 
in

in

x

q

 
 
 

out

out

x

q

 
 
 
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Ray matrix for free space or a medium 

If xin and qin are the position and slope upon entering, let xout and 

qout be the position and slope after propagating from z = 0 to z. 

out in in

out in

x x z q

q q

 


xin, qin 

z = 0 

xout qout 

   z 1
   

0 1

out in

out in

x xz

q q

    
    

    

Rewriting these expressions 

in matrix notation: 

1
=  

0 1
space

z
O

 
 
 

Some typical ray matrices 
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Ray Matrix for an Interface 

At the interface, clearly: 

 

   xout =  xin.   

 

 

Now calculate qout.  

 

Snell's Law says:    n1  sin(qin)  =   n2  sin(qout) 

 

which becomes for small angles:   n1 qin  =  n2 qout 

  qout =   [n1 / n2] qin   

qin 

n1 

qout 

n2 

xin xout 

1

2

1 0

0interfaceO n

n

 
 
 
  
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Ray matrix for a curved interface 

1 1

2 2

1 0

( 1) /curved
interface

O n n
R

n n

 
 
 
  

Now the output angle also depends on the input position 

n1 n2 

q1 
q2 

If the interface is curved: 

1 2( / )( / ) /out in in inn n x R x Rq q   

1 2 1 2( / ) ( / 1) /out in inn n n n x Rq q   

Snell's Law:   n1 q1  =  n2 q2 

1 2( / ) ( / )in in out inn x R n x Rq q   

q1 = qin+ xin / R  and q2 = qout+ xin / R 
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A thin lens is just two curved interfaces 

1 2 1 2

1 0

( / 1) / /
curved
interface

O
n n R n n

 
  

 

We’ll neglect the glass in between (it’s a 

really thin lens!), and take n1 = 1. 

2 1 2 1

1 0 1 0

( 1) / (1/ 1) / 1/
thin lens curved curved

interface interface

O O O
n R n n R n

   
     

    

2 1 2 1

1 0 1 0

( 1) / (1/ 1) / (1/ ) ( 1) / (1 ) / 1n R n n R n n n R n R

   
    

        

n=1 

R1 R2 

n≠1 

n=1 

2 1

1 0

( 1)(1/ 1/ ) 1n R R

 
  

  
1 0

1/ 1f

 
 
 

This can be written: 

1 21/ ( 1)(1/ 1/ )f n R R   The Lens-Maker’s Formula where: 
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Ray matrix for a lens 

The quantity  f  is the focal length of the lens. It’s the single most 

important parameter of a lens. It can be positive or negative. 

1 0
=  

-1/ 1
lensO

f

 
 
 

If f > 0, the lens deflects 

rays toward the axis.  

f > 0 

If f < 0, the lens deflects 

rays away from the axis. 

f < 0 

1 21/ ( 1)(1/ 1/ )f n R R  

R1 > 0 

R2 < 0 

R1 < 0 

R2 > 0 
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A system images an object when B = (x/ q) = 0. 

When B = 0, all rays from a 

point xin arrive at a point xout, 

independent of angle. 

xout = A xin When B = 0, A is the magnification. 

0out in in

out in in in

x x A xA

C x DC Dq q q

      
              
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Significance of zero values of matrix elements 

A = 0   xout independent of xin    parallel-to-point focusing (focus) 

B = 0   xout independent of qin    point-to-point focusing (image of object) 

C = 0  qout independent of xin     parallel-to-parallel imaging (telescopic) 

D = 0  qout independent of qin     point-to-parallel imaging (e.g. headlamp) 

 

out in

out in

x xpar pt pt pt

par par pt parq q

     
    

     
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Thin Lens Equation 
(using matrices) 
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 

/

1/ 1/ 1/

0  

o i o i

o i o i

B d d d d f

d d d d f

  

  

  if

1 1 0 1

0 1 1/ 1 0 1

11
    

1/ 1 /0 1

1 / /
    

1/ 1 /

i o

oi

o

i o i o i

o

d d
O

f

dd

f d f

d f d d d d f

f d f

     
      

     

  
        

   
  

  

1 1 1

o id d f
 



Imaging Magnification 

1 1 1

o id d f
 

1 1
1 / 1i i

o i

A d f d
d d

 
     

 

 i

o

d
M

d
 

If the imaging condition, 

is satisfied, then: 

1 / 0

1/ 1 /

i

o

d f
O

f d f

 
  

  

1 1
1 / 1o o

o i

D d f d
d d

 
     

 
1/o

i

d
M

d
  

0

1/ 1/

M
O

f M

 
  

 

So: 
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Consecutive lenses 

2 1 1 2

1 0 1 0 1 0
=  =  

-1/ 1 -1/ 1 -1/ 1/ 1
totO

f f f f

     
     

     

f1 f2 

Suppose we have two lenses 

right next to each other (with 

no space in between). 

tot 1 21/ =1/ +1/f f f

So two consecutive lenses act as one whose focal length is the sum 

of the individual focal lengths. 

[ As a result, we define a measure of inverse lens focal length, the 

dioptre, where       1 dioptre = 1 m-1  ] 



 So 

 

and this arrangement 

maps position to angle: 

 

 

Lenses can also map 

angle  position 

From the object to  

the image, we have: 

 

1) A distance f 

2) A lens of focal length f 

3) A distance f 

1 1 0 1

0 1 1/ 1 0 1

1 1
       

0 1 1/ 1

0
       

/1/ 0

out in

out in

in

in

in in

in in

x xf f

f

xf f

f

x ff

x ff

q q

q

q

q

        
        

        

    
     

     

    
           

out inx q

out inxq 
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If an optical system lacks axial symmetry, we must 

analyse its x- and y-directions separately: 

e.g. cylindrical lenses 

A "spherical lens" focuses in both transverse directions. 

A "cylindrical lens" focuses in only one transverse direction. 

When using cylindrical lenses, we must perform two separate ray-

matrix analyses, one for each transverse direction. 

This compares with a Quadrupole lens in charged-particle optics. 
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Complex Beam Parameter for Gaussian Beams 

• The ABCD method can be extended to Gaussian beams using the 

complex beam radius, q(z): 

 

 

 

• After finding the optical ABCD matrix as before, the complex radius 

of curvature is transformed in the following way 

 

 

 

• Characterisation of the beam allows us to predict its form elsewhere 

 

• No time to discuss details here ….. 

   2
)(

11

zw
i

zRzq 




 
 
  DzCq

BzAq
zq




'

Gaussian distribution is a solution of the paraxial Helmholtz equation 

TEM00 mode 



Ray Matrix for a Curved Mirror 

Like a lens, a curved mirror will focus a beam. Its focal length is R/2. 

Note that a flat mirror has R = ∞ and hence an identity ray matrix. 

1 ( )

2 /

out s in s s

in inx R

q q q q q q

q

    

 

Consider a mirror with radius of curvature R, with its optical axis 

perpendicular to the mirror: 

qin 

qout 

xin = xout 

q1 
qs 

R 

z 

q1 

1 /in s s inx Rq q q q  

1 0
 = 

2 / 1
mirrorO

R

 
 
 


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Laser Cavities / Resonators 

Two flat mirrors, the flat-flat 

laser cavity, is difficult to align 

and maintain aligned. 

Two concave curved mirrors, 

the usually stable laser cavity, 

is generally easy to align and 

maintain aligned. 

e.g. confocal or concentric 

Two convex mirrors, the 

unstable laser cavity, is 

impossible to align! 

(could also be flat–plane, etc.) 
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An unstable cavity (or unstable resonator) can work if you do it 

properly! 

In fact, it produces a large diameter beam, useful for high-power 

lasers, which must have large beams. 

Unstable Resonators 

The mirror curvatures 

determine the beam size, 

which, for a stable resonator, 

is small (100 mm to 1 mm). 

An unstable resonator can 

have a very large beam, but 

the gain must be high… and 

the beam has a hole in it. 
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Consider paraxial ray within resonator – if ray escapes 

after finite number of bounces, resonator is unstable. 

stable unstable 

2 concave mirrors. By convention, R > 0 
for concave, and R < 0 for convex. 

ABCD matrix analysis for a single round trip:  

1 2

2

2 2

2

1 2 1 2 2 1 1 2

1 0 1 01 1

2 / 1 2 / 10 1 0 1

1 2 / 2 2 /

4 / 2 / 2 / 1 2 / 4 / 4 /

A B L L

R RC D

L R L L R

L R R R R L R L R L R R

        
                  

  
  

     

After N round trips, the output ray is related to the initial ray by: 

N

out in

out in

x xA B

C Dq q

    
    

    

Stability of a resonator - ray matrix analysis 

Define  new variable, , such that: 
2

1 2 1 2

2 2 2
cos 1

L L L

R R R R
    

Can show that: 

sin( ) sin[( 1) ] sin( )1

sin( ) sin( ) sin[( 1) ]sin

N
A B A N N B N

C D C N D N N

  

  

    
   

    



1
[( sin sin( 1) ) ( sin ) ]

sin
o in inutx A N N B Nx  q


   

Note that the output ray position xout remains finite when N goes to infinity, as long as  is 
a real number. 

If  becomes complex, then 
1

sin ( )
2

iN iNN e e
i

   

one of these exponential terms grows to infinity as N gets large 

Thus the condition for resonator stability is that  is real, or cos  1  

Defining the “g parameters” of the resonator by: 
 
 
 
Then, the stability requirement is: 

1 2

1 2

(1 ) (1 )
L L

g g
R R

   

1 20 1g g 



Analysis of Gaussian laser beams gives the same result for stable cavity modes! 

 Certain ones are particularly interesting  

Planar – rarely used, large mode size, very sensitive to misalignment 
Concentric – also very sensitive to misalignment, so rarely used 
Confocal – smallest average spot size, relatively insensitive to misalignment, commonly used 
Hemispherical – very insensitive to misalignment, very common design 
… etc. 

hemisph 



Aberrations 

Aberrations are distortions that occur in images, usually due to 

imperfections in lenses - some unavoidable, some avoidable. 

They include: 

 Chromatic aberration 

 Spherical aberration 

 Astigmatism 

 Coma 

 Curvature of field 

 Pincushion and Barrel distortion 

 

Most aberrations can’t be modelled with ray matrices. Designers beat 

them with lenses of multiple elements, that is, several lenses in a row. 

Some zoom lenses can have as many as a dozen or more elements. 
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Chromatic Aberration 

Because the lens material has a different refractive index for each 

wavelength, the lens will have a different focal length for each wavelength. 

Recall the lens-maker’s formula: 

1 21/ ( ) ( ( ) 1)(1/ 1/ )f n R R   

Here, the refractive index is larger for 

blue than red, so the focal length is less 

for blue than red. 

Can model spherical aberration using ray 

matrices, but only one colour at a time. 

31 

c.f. strong chromatic aberration in magnetic quadrupole lenses. 



Chromatic aberration can be minimised using additional lenses 

In an achromat, the second lens cancels the dispersion of the first. 

Achromats use 

two different 

materials, and 

one has a 

negative focal 

length. 
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Spherical Aberration in Mirrors 

For all rays to converge to a point a distance f away from a curved 

mirror, we require a paraboloidal surface.  

But this only works for rays with qin = 0.  

Spherical surface Paraboloidal surface 
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Spherical Aberration in Lenses 

So we use spherical surfaces, which work better for a wider 

range of input angles.  

Nevertheless, off-axis rays see a different focal length, so 

lenses have spherical aberration, too. 

34 



Minimising spherical 

aberration in a focus 

2 1

2 1

R R
q

R R






plano-convex lenses (with their flat surface facing the focus) are best 

for minimising spherical aberration when focusing.  

One-to-one imaging works best with a symmetrical lens (q = 0). 

R1 = Front surface 

radius of curvature 

R2 = Back surface 

radius of curvature 
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Spherical 

aberration can 

also be minimised 

using additional 

lenses 

 
(general point here is 

that aberrations may be 

minimised by utilising 

symmetry. 

 

Also true in CP optics)  
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Astigmatism 

When the optical system 

lacks perfect cylindrical 

symmetry, we say it  

has astigmatism.  A 

simple cylindrical  

lens or off-axis  

curved-mirror  

reflection will  

cause this  

problem. 

q 

Cure astigmatism with another cylindrical lens or off-axis curved mirror. 

Can model  

astigmatism  

by separate x  

and y analyses. 

37 
We’ll see that CP systems are intrinsically astigmatic  



Geometrical Optics terms for lens system 
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Charged-Particle (CP) Optics 

39 

Here we use predominantly magnetic field configurations to bend and 

focus CP beams (positive ions or electrons). 

 

• Bending performed by (predominantly) uniform-field dipole 

magnets 

 

• Focusing performed (predominantly) by quadrupole magnets 

 

• Higher-order corrections applied via sextupole, octupole, etc., 

magnets 

Lorentz Force 

 

q = electric charge 

B = magnetic induction 

E = electric field 

v = velocity 

 



40 
sextupole magnet 

dipole bending magnet                 quadrupole focusing magnet   

quadrupole triplet in beam line 

N 

N S 

S 
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M2 versus Emittance 

M2  - deviation of real laser beam envelope from ideal TEM00  

Gaussian envelope 

 

      - fundamental beam divergence a consequence of diffraction 

of finite aperture beam   

Emittance – measure of finite phase space occupied by CP beam 

envelope (or an agreed fraction of it) 

- normally a conserved quantity for beam transport  systems 

(within well-defined conditions)  

 

Deviations from ideal beams in L and CP 
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M-squared measurement is like a 

solenoid or quadrupole scan.  

M2 remains invariant through 

ABCD optical systems.  

M2 in real Gaussian beams 

M-squared is a bit like emittance.  

 
2

2

0

2

0 1 











w

z
Mwzw





0

2

w

M




q 
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• The volume occupied in phase space by a system of particles is constant. 

• This is a general physics theorem in canonical co-ordinates, not limited to 

accelerators. 

• Application of external forces or emission of radiation needs to be treated 

carefully  [LT holds for fixed E & conservative forces] 

• Can define normalised emittance, n =  /    

Liouville’s Theorem: 

CP Beam Emittance,   

 defined as 2D phase 

space area divided by  



As beam propagates, shape of the phase ellipse will change 
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measured H phase space 

using solenoid scan 

N.B. Even when LT holds, non-linear forces can give rise to an increase 

in the ‘effective’ phase space area occupied by the beam, termed 

‘filamentation’. 



• Basic calculations (to 3rd order) can be carried out by matrix techniques quite 

similar to ABCD 

 

• BUT - inherent astigmatism of magnetic-optical components demands that 

we use separate matrix elements for x (H) and y (V) motion 

 

• AND chromaticity of systems means we need to add 2 more components to 

our matrix, giving a 6 x 6 matrix. 

 

• Matrix components are (x, q, y, , l , )  

 

  

Extra co-ordinates are: 

 

 l = bunch length of particle beam (strictly the difference in path length between 

the arbitrary trajectory and the central trajectory) 

 

  = p/p =  fractional momentum width of particles in beam  (which is same as 

fractional energy width E/E for ultra-relativistic particles like electrons – but not 

in general for ions/protons) 

Transport of charged particle beams 

46 
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11 12 13 14 15 16 0

21 22 23 24 25 26 0

31 32 33 34 35 36 0

44 45 46 0

55 56 0

66

R R R R R Rx x

R R R R R R

R R R R R Ry y

R R R

etc R R

R

q q

 

 

    
    
    
    

     
    
    
    
     

Program TRANSPORT (K L Brown et al) is archetypal beam transport program, 

and almost all others use similar notation.   Beam rep by 6 X 6 ‘R-matrix’: 

Due to symmetries in system, many matrix elements are always zero 

11 12 16 0

21 22 26 0

33 34 0

43 44 0

51 52 56 0

0 0 0

0 0 0

0 0 0 0

0 0 0 0

0 0 1

0 0 0 0 0 1

R R Rx x

R R R

R Ry y

R R

R R R

q q

 

 

    
    
    
    

     
    
    
    
     

horiz (x) plane matrix 

…assuming here (as is normal) that all bends are in horizontal plane. 

vert (y) plane matrix 

chromaticity (l, ) matrix 



Transport of a ray though a system of beam line elements is as before for L optics: 

xn  =  (Rn Rn-1 … R0) x0  

Complete system is represented by one matrix: 

 

Rsystem   =  Rn Rn-1 … R0  
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…and, as for L optics, optical imaging conditions can be specified by setting certain 

matrix elements to zero.   e.g.: 

R11 = 0    H plane parallel-to-point focusing       

R12 = 0    H plane point-to-point imaging      

R21 = 0    H plane parallel-to-parallel transformation       

R22 = 0    H plane point-to-parallel transformation       

… with corresponding conditions for V plane (R33 to R44) 
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Curvilinear TRANSPORT 

Coordinate System  
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Now we can also impose conditions on bunch length: 

e.g.  

R56 = 0   isochronous condition (bunch length does NOT depend on particle 

momentum)…. 

 

plus if R51 = 0 and R52 = 0 also, this isochronous condition will be maintained 

down the transport system 

 

This should ideally be maintained to 2nd order (T566 = 0, etc). 

 

 

 

Important in many modern accelerator and free-electron laser applications – 

but often difficult to achieve (see later). 

In bend (H) plane also have chromaticity conditions:  

R16 = 0   achromatic     and      R26 = 0   angle-achromatic   
examples 

follow 



e.g. TRANSPORT matrices 

of a Drift and a Quadrupole 
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Combine drifts and quadrupoles as before 

to make doublets and triplets: 

 

N.B. Essential in CPO because quadrupole 

is highly astigmatic – need combinations to 

mimic rotationally-symmetric LO lenses.   

focusing plane of quadrupole 

defocusing plane of quadrupole 

no path length dependence 

(to first order ) 



optics of a quadrupole 

singlet & doublet 
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VERTICAL 

HORIZONTAL 

SINGLET 

DOUBLET 

Imagine designing laser optics 

with lenses like these! 
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FD and DF planes of a 

stigmatic quadrupole doublet 

F 

F D 

D 

point-to-point 

quadrupole sextet 
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focusing with a  

quadrupole triplet 

TRANSPORT design calculation of 

a quadrupole triplet focusing on a 

target (tgt).  

horiz.(x) and vert.(y) envelopes of 

the phase ellipse (-matrix). 

 
This symmetrical triplet  ½f - d - ½f  

corresponds to an optical lens.  

 

This indicates the complexity of 

beam transport with magnetic 

elements! 
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TRANSPORT bending magnet (dipole) matrix (first-order only): 

No time to go into details of dipoles here …. 



Examples of systems, 

and comparison with L optics 

What follows are some arbitrarily chosen examples to 

illustrate the similarities and differences between CP 

and  L optics. 

 

The references at the end contain many more 

examples. 
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Achromatic Energy Selection System 

(in Proton Therapy Facility) 
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Schematic layouts of achromatic magnet systems 

R16 = R26 = 0 

Achromatic systems have broad momentum acceptance, or allow selection of a narrow 

momentum/energy spread 
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adjustably isochronous 180-deg 

transport system for free-electron 

lasers (Gillespie, 1996). Dipoles 

D2 and D3 can be separated if 

required. 

Isochronous Systems 

There is no point in generating an ultrashort electron (or CP) bunch if we cannot 

deliver this bunch unaltered to a target!   Systems required need to be isochronous 

to at least 2nd order in the particle co-ordinates. 

(sextupoles are required to cancel out 

the chromatic aberrations produced 

by the quadrupoles) 

Adjustability of the isochronism may be 

required, for example, in a recirculating 

accelerator such as an energy-recovery 

linac (ERL) 

e.g. Jefferson Lab ERL in Virginia.  
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Extreme example of 

isochronous system  - 

TOF mass spectrometer 

(Wollnik, 1987) 
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• Energy modulator: RF structure, laser, wakefield 

• Non-isochronous section of beam line 

• In practice, may need multi-stage compression  

Magnetic electron bunch compression – Principle: 

          Non-isochronous systems 

Comparison: electron bunch compressors with laser pulse compressors/expanders  

Problem:  Coherent X-ray sources (single-pass FELs), linear colliders and laser 

plasma wakefield accelerators all require high peak currents/very short electron 

bunches, so we need bunch compression techniques. 
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Types of magnetic bunch compressor 

chicane 

R56˂ 0  T566˃ 0 

S-chicane 

R56˂ 0  T566˃ 0 

FODO arc 

R56 ˃ 0  T566˃ 0 

Dog-leg 

R56 ˃ 0  T566˃ 0 



Compare laser beam expanders/compressors 
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Equivalents of magnetic dipoles are 

optical prisms or diffraction gratings. 

Prism compressor. The red lines represent rays of 

longer wavelengths and the blue lines those of 

shorter wavelengths. The spacing of the red, green, 

and blue wavelength components after the 

compressor is drawn to scale. This setup has a 

negative dispersion. 

prisms 

Newport Corporation 
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chirped pulse amplification using pairs of gratings. 

 

 CPA is a powerful method of producing high-power 

ultrashort laser pulses 

gratings 
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Single-prism pulse compressor (Trebino) 

Swamp Optics 
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4-f spectral filter used to carve out narrow-band pulse (Dundee-Daresbury group) 

4-dipole magnetic chicane can be used to insert mask at symmetry plane SS’ 

(extensively used in FEL accelerator injectors)  

S’ 

S 
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BIG KARL  

Spectrometer 

(Jülich, KFZ) 

Bending radius r0 = 1.98 m 

Bmax = 1.7 T 

gap = 6cm 

weight = ~ 50 tons (D1) 

               ~ 70 tons (D2) 

  

 

Resolv. power: p/Dp = 20600 

Dispersion = -2.0  to  26 cm/%  

Magnification Mx = 0.63 – 1.26 

Magnification My = 25.4 – 1.94 

Large range: Emin /Emax = 1.14 

Solid angle: < 12.5 msr 

Examples of dispersive systems (charged particle spectrometers) 
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Q3D spectrometer (Enge and Kowalski, MIT) 
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Grand Raiden High-Resolution Spectrometer 

(Osaka, Japan) 
Max. Magn. Rigidity:  5.1 Tm 

Bending Radius:        3.0  m 

Solid Angle:               3     msr 

Beam Line/Spectrometer fully matched 
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The transport of rays and phase ellipses  

  in a drift and a focusing quadrupole lens 

2. 
3. 

Matching of emittance and acceptance 

Lens 2 Lens 3 

Focus 
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Forces on ions in magnetic multipoles 

 

 

 

 

   

Quadrupole Hexapole Octopole 


