TUNABLE LASERS

LA3NET Workshop at Fraunhofer ILT Aachen, Nov. 5th 2013 Bernd Jungbluth

OUTLINE

- Tunable Coherent Light Sources Introduction and Overview
- Tunable Lasers Design Basics and Challenges
- Design Examples I Tunable Lasers
- Nonlinear Frequency Mixing *Extending the Tuning Range*
- Design Examples II Frequency Converters and Parametric Devices
- Summary Lessons Learned

Tunable Coherent Light Sources — Introduction & Overview

Nonlinear Optical Three-Wave-Mixing

 \rightarrow Extending the Tuning Range

Nonlinear Optical Three-Wave-Mixing

\rightarrow Extending the Tuning Range

Single Step Processes

SFG, DFG (Sum / Difference Frequency Generation)

(Second Harmonic Generation)

Two Step Processes:

Nonlinear Optical Three-Wave-Mixing

\rightarrow Extending the Tuning Range

Nonlinear Optical Three-Wave-Mixing II

\rightarrow Parametric Frequency Conversion

- Generation of two photons with longer wavelength ($\underline{s} = signal, \underline{i} = idler$) out of one photon with shorter wavelength $(\underline{p} = pump)$
 - **OPG** = optical parametric generator
 - **OPO** = ... oscillator
 - **OPA = ... amplifier**

 \rightarrow Tunable laser output based on nonlinear optical three-wave-mixing

Nonlinear Optical Three-Wave-Mixing II

Overview

→ Tunable Laser Concepts

Alternative Approaches

→ Here: Free Electron Laser

Not included in this presentation!

Tunable Lasers Design Basics and Challenges

Broadband Gain Laser Media

Example: Ti:Sapphire

stoichiometric:	Ti ³⁺ :Al ₂ O ₃
Crystal structure:	hexagonal
Level structure:	4-level, vibronic
$\sigma_{\pi,max}$	$3-4 \cdot 10^{-19} \text{ cm}^2$
E _{sat}	0,9 J/cm ²
τ	3,2 µs (@ 300 K)
η _Q	≅ 0,82 (@ 300K)
dn _e /dT	14,7 ·10 ⁻¹⁹ cm ²
κ	42 W/m/ K

* MOULTON, P. F.: Spectroscopic and laser characteristics of $Ti:Al_2O_3$. Journal of the Optical Society of America. B, **3**, 125-133 (1986)

Spectroscopy

Broadband Gain Laser Media

Solid-state Laser Media with Broadband Emission in VIS and NIR

 \rightarrow For laser media with large gain bandwidth $\Delta\lambda$ the product $\sigma \tau_f$ is small

 \rightarrow High brightness pump sources & high fluence on resonator optics

from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich"

wavelength dependent...

angular deflection		transmission		
Grating	AOTF ¹	Prism	Etalon	Lyot-Filter*
	•	-		
Tuning mech	nanism			
diffra	ction	refraction	multiple-beam interference	birefringence/ retardation
+ high resolution	+ robust - losses	+ contrast ratio	+ resolution - thermal	+ efficiency - contrast ratio
			instability	

¹ AOTF = acousto optical tuning filter.

(*from: Meschede, "Optik, Licht, Laser")

wavelength dependent...

	angular	deflection transmi		smission
Grating	AOTF ¹	Prism	Etalon	Lyot-Filter*
	*			
Tuning mech	nanism			
diffra	ction	refraction	multiple-beam interference	birefringence/ retardation
+ high resolution - losses	+ robust - losses	+ contrast ratio - low resolution	+ resolution - thermal instability	+ efficiency - contrast ratio

¹ AOTF = acousto optical tuning filter.

(*from: Meschede, "Optik, Licht, Laser")

Comb-like transmission curve from multi-beam interference:

$$T_E = \frac{(1 - R_E)^2}{(1 - R_E)^2 + 4R_E \sin^2(\Delta \phi / 2)}$$

(Airy function)

with

$$\Delta \phi = 2\pi v / c \cdot 2d_E \sqrt{n^2 - \sin^2 \theta_i}$$

(phase difference of neighboring beams)

Pictures from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich"

Pictures from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich"

Comb-like transmission curve from multi-beam interference:

$$T_E = \frac{(1 - R_E)^2}{(1 - R_E)^2 + 4R_E \sin^2(\Delta \phi / 2)}$$

(Airy function)

Design parameters:

Ο

798

100

80

60

40

20

0

transmission/%

wavelength/nm

FSR

800

4

tilt angle/°

FWHM

801

802

 $\theta = 4.05^{\circ}$

λ= 800 nm

6

100

60

40

20

 \mathbf{O}

transmission/%

799

2

Etalon

Comb-like transmission curve from multi-beam interference:

$$T_E = \frac{(1 - R_E)^2}{(1 - R_E)^2 + 4R_E \sin^2(\Delta \phi / 2)}$$

(Airy function)

High finesse \rightarrow high intensity enhancement !!!

Design parameters:

FSR
$$\Delta v_E = c \cdot \left[2d_E \cdot \sqrt{n^2 - \sin^2 \theta_i} \right]^{-1}$$
 \longrightarrow thickness
Finesse $\mathcal{F} = FSR / FWHM \approx \pi \sqrt{R_E} / (1 - R_E)$ \longrightarrow reflectivity

 $\partial \theta_{e,1}$

 $\partial \lambda$

= 0

(HR)

output coupler (PR)

zoom

Pictures from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich"

SF18...)

 \rightarrow Optimization measures:

Choice of glass (e.g., SF14,

Prisms

Choice of glass

	LIDT [J/cm ²] (0% damage after ~1800 pulses)	
	1064 nm @ 12 ns	532 nm @ 10 ns
N-BK7	2017	74.4
N-FK5	1574	226
F2	690	7.7
N-LASF44	720	18.5
N-LAF21	933	15.0
SF6	185	surface damage
Suprasil CG	1866	> 280

LIDT =

Laser Induced

Damage Threshold

1064 nm @ 74 ps 532 nm @ 74 ps	
N-BK7 31.8 8.2	N-BK7
N-FK5 35.2 9.7	N-FK5
F2 16.7 3.5	F2
N-LASF44 13.8 3.7	N-LASF44
N-LAF21 12.6 4.7	N-LAF21
SF6 6.4 surface damage	SF6
Suprasil 39.2 11	Suprasil

From Ralf Jedamzik et al.(Schott): "Recent Results on Bulk Laser Damage Threshold of Optical Glasses", LASE Conference, Proc. SPIE 8603-04, 2013

From Ralf Jedamzik et al.(Schott): "Recent Results on Bulk Laser Damage Threshold of Optical Glasses", LASE Conference, Proc. SPIE 8603-04, 2013

Prisms

Choice of glass

here: susceptibility to 2-Photon absorption

Pictures from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich"

Choice of glass

Prisms

Prisms pumped zoom laser medium $\frac{\partial \theta_{a,2}}{\partial \theta_{a,2}} \approx -2Z_{P}$ дλ \mathcal{H}_2 Passband width depends on: ♥H3 ∂h_3 Dispersion of the glass prisms Number Z_p of prisms output $|\mathcal{H}_1|$ **Optical Setup (here** coupler thermal lens) tuning (PR)mirror $\partial \theta_{\!\!\!\!\!e,1}$ \rightarrow Optimization measures: (HR) = 0 $\partial \lambda$ Choice of glass (e.g., SF14, SF18...)

Optical setup

use of telescopes inside the cavity, here prism expander

Pictures from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich"

Pictures from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich"

Tunable Lasers

Resonator Architecture

Single Frequency Laser (CW)

Resonator Architecture

Gain-Switched Laser (ns pulses)

Resonator Architecture

Modelocked Laser (ps and fs pulses)

Analysis of performance limits

Air Enclosures in Dielectrical Coating Stacks

Output coupler with customized reflectivity profile

Output coupler with customized reflectivity profile

LIDT in Laser Operation

	coating	substrate/type	fluence	number of
			/(J⋅cm⁻²)	tests
			LIDT	
ſ	MgF ₂	SF18	2	3
	PR	etalon	7,5/F**	10
$\left\{ \right.$	BBHR	FS	2,5	6
	BBAR	SF11	5	5
L	BBAR	OHARA S-TIH10	5	5
			acceptable	
			load >	
	PR	output coupler	10	>20
$\left \right\rangle$	BBAR	FS	7	>10
	BBAR	BK7	6	3
	BBAR	LaFN21	0,75	3
	BBAR	SK11	0,75	3

from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich"

no damage

Design Examples I

- Tunable Lasers

Gain Switched Ti:Sapphire Laser

Output power curve at 10W pump power provided by an INNOSLAB MOPA (Edgewave)

Laser Prototype

- Tuning Range
- Laser Linewidth
- Pulse Energy
- Pulse Duration
- Beam Quality
- Pulse Frequency

- 680-1020 nm
- 10 GHz (0,33 cm⁻¹)
- 3 mJ
- 10 ns
- M² < 1,5
- 1 kHz

Gain Switched Ti:Sapphire Laser

Laser Prototype

- Tuning Range
- Laser Linewidth
- Pulse Energy
- Pulse Duration
- Beam Quality
- Pulse Frequency

- 680-1020 nm 10 GHz (0,33 cm⁻¹)
- 3 mJ
- 10 ns
- M² < 1,5
- 1 kHz

Diode Pumped, Tunable Alexandrite Laser

Diode Pumped, Tunable Alexandrite Laser

Feasibilty demonstration

- Tunability: 745 805 nm
- QCW @ 35 Hz
- Burst energy: 620µJ @ 772 nm
- Efficiency (opt.-opt.): 20% (30% slope)
- Beam quality: $M^2 \cong 1,1$

Based on a newly developed diode module

- Optical peak pulse output power > 16 W
- Spectral line width: 2.2 nm
- Beam quality: $M^2 = 25 / 41$ in the fast / slow axis
- Electro-optical efficiency > 30 %
- → Replacement of flashlamps as pump source

Target Application:

frequency doubled, Q-switched, SF-Laser with UV output for atmospheric LIDAR measurements

Nonlinear Frequency Mixing – Extending the Tuning Range

Nonlinear Optical Three-Wave-Mixing

 \rightarrow Extending the Tuning Range

\rightarrow Nonlinear Coupling

Wave-Equation in Nonlinear Dielectrica

$$\nabla^2 \vec{E}(t) - \frac{n^2}{c^2} \frac{\partial^2}{\partial t^2} \vec{E}(t) = \frac{4\pi}{c^2} \frac{\partial^2}{\partial t^2} \left(\vec{P}_L(t) + \vec{P}_{NL}(t) \right)$$

with
$$P_{NL}(t) = \chi^{(2)} (E_1 e^{-i\omega_1 t} + E_2 e^{-i\omega_2 t} + c.c.)^2$$

$$Ecos(\omega t)$$

$$P(t) = qx(t)$$

$$x=0$$

Anharmonic Field (from: Meschede, "Optik, Licht, Laser")

(for 3-wave-mixing)

 d_{eff} (effective nonlinearity), and $\Delta k = k_3 - k_2 - k_1$ (phase mismatch) with

\rightarrow Nonlinear Coupling

Wave-Equation in Nonlinear Dielectrica

$$\nabla^2 \vec{E}(t) - \frac{n^2}{c^2} \frac{\partial^2}{\partial t^2} \vec{E}(t) = \frac{4\pi}{c^2} \frac{\partial^2}{\partial t^2} \left(\vec{P}_L(t) + \vec{P}_{NL}(t) \right)$$

with
$$P_{NL}(t) = \chi^{(2)} (E_1 e^{-i\omega_1 t} + E_2 e^{-i\omega_2 t} + c.c.)^2$$

$$\Rightarrow \begin{cases} \frac{\partial E_3}{\partial z} \propto d_{eff} E_1 E_2 e^{i\Delta kz} \\ \frac{\partial E_2}{\partial z} \propto d_{eff} E_3 E_1^* e^{-i\Delta kz} \\ \frac{\partial E_1}{\partial z} \propto d_{eff} E_2^* E_3 e^{-i\Delta kz} \end{cases}$$

 d_{eff} (effective nonlinearity), and $\Delta k = k_3 - k_2 - k_1$ (phase mismatch) with

\rightarrow Phase Matching

$$\Delta k = 0 \quad \Leftrightarrow \omega_3 n(\omega_3) - \omega_2 n(\omega_2) - \omega_1 n(\omega_1) = 0 \quad \Box$$

Requirement to obtain high conversion efficiency !!!

Boundary condition of the refractive index
$$n_1, n_2, n_3$$
 of the three waves

Example: SHG $\omega_1 = \omega_2 = \omega$ $\omega_3 = 2\omega$ $n(\omega) = n(2\omega)$

- → Due to dispersion phase matching usually can not be obtained in isotropic media
- → Use of birefringent crystals or periodically poled crystals

 \rightarrow Phase Matching

[from: V. G. Dmitriev: Handbook of Nonlinear Optical Crystals]

→ In many cases phase matching can be achieved by a proper choice of polarization, crystal orientaion and crystal temperature

e-beam: extra-ordinary o-beam: ordinar) polarisiert

Classification of birefringent crystals $n_o > n_e$: negativ $n_o < n_e$: positiv

Туре	E ₁	E ₂	E ₃	crystal
I	е	е	0	negative
I	0	0	е	positive
П	0	е	е	negative
II	0	е	0	positive

 \rightarrow Modeling tools

Analytical solutions exist only for a few special cases

- \rightarrow Numerical Modeling (e.g. OPT, SNLO)
- Phase and intensity are defined, propagated, amplified and converted (...) on grids
- Consideration of:
 - Diffraction
 - Walk-Off
 - Nonlinear coupling
 - Absorption \rightarrow dn/dT (FEM)
 - Thermomechanics $\rightarrow d\sigma/dT$
 - Beam profile and quality
 - Temporal pulse shape
 - Group delay effects (GVD)

 $j \in \{1, 2, 3\}, k \in \{1, 2, 3\} \setminus j, l \in \{1, 2, 3\} \setminus \{j, k\}$

Design Examples II

– Frequency Converters and Parametric Devices

Laser Prototype

Fundamental Ti:Sapphire Laser:

- Tuning Range 680-1020 nm
- Laser Linewidth
- 10 GHz (0,33 cm⁻¹)

3 mJ

- Pulse Energy
- Pulse Duration 10 ns
- Beam Quality M² < 1,5</p>
- Pulse Frequency 1 kHz

Basic Conception

Stage	Crystal	Output	Phase Matching		$d_{rr} / pm V^{-1}$
Wavelength / nm		Туре	Angle /°	"ett / Pitt	
DFG	BBO	510 - 680	eoe	32,1 - 27,6	1,72 - 2,01
SHG	BBO	340 – 510	ooe	34,8 - 23,6	0,81 - 1,55
THG	BBO	240 – 340	ooe	51,8 - 32,8	1,95 - 2,01
FHG	BBO	210 – 240	ooe	75,9 - 56,0	2,01 - 2,02

Laser Prototype

Fundamental Ti:Sapphire Laser:

- Tuning Range 680-1020 nm
- Laser Linewidth
- Pulse Energy
- Pulse Duration 10 ns
- Beam Quality M² < 1,5
- Pulse Frequency 1 kHz

from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich"

10 GHz (0,33 cm⁻¹)

3 mJ

Performance

Detailed Conception

High comlexityLarge footprint

Laser Prototype

Fundamental Ti:Sapphire Laser

- Tuning Range 680-1020 nm
- Laser Linewidth 15 GHz (0,5 cm⁻¹)
- Pulse Energy 1.7 mJ
- Pulse Duration 10 ns
- Pulse Frequency 1 kHz

Optical Redesign

Less complexSmaller footprint

Laser Prototype

Fundamental Ti:Sapphire Laser:

- Tuning Range 680-1020 nm
- Laser Linewidth
- Pulse Energy
- Pulse Duration 10 ns
- Beam Quality M² < 1,5</p>
- Pulse Frequency 1 kHz

from: Jungbluth, "Gewinngeschaltete Ti:Saphir-Laser mit ultrabreitem Abstimmbereich

10 GHz (0,33 cm⁻¹)

3 mJ

Optical Redesign, Performance

Laser Prototype

Fundamental Ti:Sapphire Laser:

- Tuning Range 680-1020 nm
- Laser Linewidth
- 10 GHz (0,33 cm⁻¹)

3 mJ

- Pulse Energy
- Pulse Duration 10 ns
- Beam Quality $M^2 < 1,5$
- 1 kHz Pulse Frequency

Tunable UV Laser for Airborne LIF Measurements

Intracavity frequency doubled Dye laser

(Laser Conception)

Laser Prototype

Tuning Range 100 GHz @ 308 nm
Laser Linewidth 3 GHz
Output power 200 mW
Pulse Duration 20 ns
Beam Quality M² < 1,5
Pulse Frequency 8.5 kHz

From Strotkamp et.al., SPIE Lase Conference, 2013

Tunable UV Laser for Airborne LIF Measurements

Intracavity frequency doubled Dye laser

Zeppelin NT for Pan-European PEGASOS campaign (FZJ)

Atmospherically OH-Measurement with LIF

- Airborne operation with airship and HALO
- T = 10 40 °C, p = 800 1000 mbar

Laser Prototype

Tuning Range 100 GHz @ 308 nm
Laser Linewidth 3 GHz
Output power 200 mW
Pulse Duration 20 ns
Beam Quality M² < 1,5
Pulse Frequency 8.5 kHz

From Strotkamp et.al., SPIE Lase Conference, 2013

Tunable UV Laser for Airborne LIF Measurements

Intracavity frequency doubled Dye laser

Pan-European PEGASOS campaign with Zeppelin NT (from FZJ)

Atmospherically OH-Measurement with LIF

- Airborne operation with airship and HALO
- T = 10 40 °C, p = 800 1000 mbar
- 2012/2013: Routine operation on Zeppelin NT in different field campaigns

Laser Prototype

Tuning Range 100 GHz @ 308 nm Laser Linewidth 3 GHz Output power 200 mW Pulse Duration 20 ns Beam Quality $M^2 < 1,5$ Pulse Frequency 8.5 kHz

From Strotkamp et.al., SPIE Lase Conference, 2013

OPO for Spaceborne Methane Measurements (MERLIN)

French-German Climate Mission

from www.dlr.de

MERLIN: **Me**thane **R**emote Sensing Lidar Mission

Laboratory Prototype (ILT)

Laser Wavelength	1645nm
Pulse Energy	9 mJ
Efficiency	> 25%
Pulse Duration	20 ns
Beam Quality	M² < 1,5
Pulse Frequency	2 x 25 Hz

OPO for Spaceborne Methane Measurements (MERLIN)

OPO Conception by DLR IPA

- 1064nm pumped OPO with KTP
- Double Pulse Operation (on- and offresonance of methane)
- Single frequency seeded
- Cavity Length Control by Heterodyne

Laboratory Prototype (ILT)

Laser Wavelength 1645nm Pulse Energy 9 mJ Efficiency > 25% Pulse Duration 20 ns Beam Quality $M^2 < 1,5$ Pulse Frequency 2 x 25 Hz

Summary

- Lessons Learned

SUMMARY

Tunable Coherent Light Sources – Introduction and Overview

- Working Principle of Tunable Lasers
- Larger Tuning Range with NLO
- Parametric Devices
- Overview

Resonator

Laser Medium

Spectral Filter

Resonator

SUMMARY

- Tunable Lasers Design Basics and Challenges
 - Gain media of tunable lasers
 - Spectral Filtering
 - Resonator Designs
 - Technical limits of broadband optics

Fraunhofer
SUMMARY

Design Examples I – Tunable Lasers

- Gain switched Ti:Saphire Laser
- Diode Pumped Alexandrite Laser

0.20

0.15

175

150

SUMMARY

Nonlinear Frequency Mixing – *Extending the Tuning Range*

 $j \in \{1, 2, 3\}, k \in \{1, 2, 3\} \setminus j, l \in \{1, 2, 3\} \setminus \{j, k\}$

optical axis

Page 74

SUMMARY

Design Examples II – Frequency Converters and Parametric Devices

- Compact UV to VIS Converter
- Intracavity doubled Tunable Dye Laser
- IRB Tunable OPO

Page 75

