Proton Study At The T2K Near Detector ND280

Michail Lazos

1

•Second generation long baseline neutrino experiment situated in Japan

- •Electron neutrino appearance
 - Mixing angle θ_{13}
- •Muon neutrino disappearance,
 - Mixing angle $\theta_{_{23}}$
- •ND280 measures various cross sections

NCQES Neutrino Interaction

- Neutral Current Quasi Elastic cross section measurements
- Neutrino energy reconstruction

Event selection FGD TPC

- Good tracking info
- Particle ID
 - TPC
 - ECAL

Single positive track Events start in FGD FGD->TPC->ECAL

Particle Discrimination Using dE/dx

- At high momentum it is very difficult to discriminate protons from μ and π
- This is what we
 measure on TPC
- Use the ECAL above 800 MeV/c to improve proton selection

Neural Network

- Neural Network (NNA) to use ECAL variables
- 3 Momentum Regions

p < 800 MeV/c, 800-1500 MeV/c and above 1500 MeV/c

- Particle Gun generated Monte Carlo were used for training and validation of the NNA
- NNA tested on Full ND280 Monte Carlo and Test Beam Data

Neural Network

- A neural network was designed to mimic a central nervous system
- Consist of sets of adaptive weights
- A linear set of sigmoid functions can approximate any continuous function

ECAL Variables

proton

TZK

8

Neural Network Training

Full ND280 MC NNA Results

Performance on Full MC Full track selection TPC PID cut (|proton pull| < 3)

 $pull = \frac{Expected \, dE \, / \, dx - Measured \, dE \, / \, dx}{\sigma}$

Test Beam Results

11

- Test Beam Data on CERN from DsEcal sub detector
- NNA results for 3 momentum regions
- NNA output
- Stack histogram normalised

Neural Network Results on MC

Statistical tests to quantify the NNA performance

Neural Network Output Cut

Summary

 I extended the proton PID above 800 MeV/c using the neural network with the Electromagnetic Calorimeter

Future Work

- Finish the NNA (calculate systematics and run on data)
- Complete the proton selection
- Measure Neutrino NCQES cross section

Thank you for your attention.

Questions?

BACK UP SLIDES

•ECAL Variables for the Neural Network

- MaxRatio
- ShowerAngle
- ShowerWidth
 - Circularity
- TruncatedMaxRatio
 - QRMS
 - FrontBackRatio
- Energy/P(momentum)

Full Spill MC Purity and Efficiency Using Only TPC

- Momentum [0-800]
- Eff: 0.85 Pur: 0.91 Electrons : 75% Muons : 11% Pions : 14%
- Momentum [800-1500]
- Eff: 0.93 Pur: 0.57 Electrons : 75% Muons : 11% Pions : 8%
- Momentum [>1500]
- Eff:0.93 Pur: 0.13 Electrons : 92% Muons : 7% Pions : 1%
- |Proton Pull| < 3 |e mu pi pull| > 2
- Momentum [0-800]
- Eff:0.85 Pur: 0.99 Electrons : 46% Muons : 27% Pions : 42%
- Momentum [800-1500]
- Eff:0.533 Pur: 0.96 Electrons : 69% Muons : 6% Pions : 23%
- Momentum [>1500]
- Eff:0.13 Pur: 0.79 Electrons : 83% Muons : 10% Pions : 4%

Neural Network Training

Particle Gun NNA Results

A different set of particle gun data files generated for NNA validation to test the NNA performance We test the ability of our NNA to discriminate between signal and background

Neural Network Training

Event selection FGD TPC

- Single positive track
- Events start in the FGD fiducial volume
- FGD ----> TPC ----> ECAL
- Good tracking info
- Particle ID
 - TPC
 - ECAL

Overview

- T2K and ND280 overview
- Proton PID physics motivation
- Steps of the analysis
- Results from MC and Test Beam Data files

Backup

- Criteria 1 : No restriction for e,μ,π pull
- Criteria 2 : |pull|>2.5 for e,μ,π

Backup

- Criteria 1 : No restriction for e,μ,π pull
- Criteria 2 : |pull|>2.5 for e,μ,π

 $pull = \frac{Expected dE/dx - Measured dE/dx}{Expected dE/dx}$

σ

Pulls for momentum 600-800MeV/c proton hypothesis

Pulls for momentum 900-1000 MeV/c proton hypothesis

Optimising The Pull

- Momentum region < 900 MeV/c
- Criteria 1 : No restriction for e,μ,π pull
- Criteria 2 : |pull|>2.5 for e,μ,π

