

The University of Manchester

A measurement of the ϕ^*_η angle in Drell-Yan di-lepton pairs

IOP HEPP - 8th April 2014

Samuel Webb

University of Manchester

samuel.webb@cern.ch

Motivation

Intermediate boson in Drell-Yan process can be produced with non-zero transverse momentum, p_T:

initial state gluon radiation

Understanding this is important for:

testing QCD predictions (at low and high p_T)

resummation techniques

modelling Z, W and Higgs production

- Boson p_T measurement limited experimentally by momentum resolution
- Motivates introduction of ϕ_n^*

define
$$\phi_{\eta}^* = an\left(rac{\pi - \Delta \phi}{2}
ight) \sin heta_{\eta}^*$$

 $\underbrace{\theta_{\eta}^{*}}_{\mathsf{C}}$

longitudinal plane (**boson rest frame**)

$$\cos\theta_{\eta}^* = \tanh\frac{\eta^- - \eta^+}{2}$$

- \checkmark sensitive to boson p_T
- \checkmark only relies on lepton directions: η , ϕ
 - ✓ minimal dependence on momentum resolution

Previous measurements

ATLAS 8 TeV measurement

Measure normalised triply differential cross section

in \$\phi_{\eta}^{*}\$, mass (M) and rapidity (y)
using 20.3 fb⁻¹ of 8 TeV data at ATLAS

$$\frac{1}{\sigma} \frac{d^3\sigma}{d\phi_\eta^* dM dy}$$

- Perform measurement in di-electron and di-muon channels
 and then combine
- Extension of the 7 TeV analysis Phys. Lett. B 720 (2013) 32
 measure φ^{*}_η above and below Z-peak
 and in coarse rapidity bins
 - Extend to higher ϕ_{η}^{*} to benefit from increased statistics

Event selection

Low background (~1% at Z peak)

- → minimal cuts required
- → signal modelled using Powheg + Pythia

Di-lepton trigger

- Exactly two electrons / muons
 - passing quality and identification requirements
 - □ p_T > 20 GeV
 - geometric acceptance cuts

invariant mass of electron pair [GeV]

Data / model comparison

Reasonable agreement between data and model in dielectron channel

- similar agreement seen in di-muon channel
- still work in progress

boson p_T [GeV]

 ϕ of highest p_T electron [rad]

 η of highest p_T electron cluster

Binning

- Wide bins in mass and rapidity
- \square Binning in ϕ^*_η mostly influenced by detector angular resolution

ϕ_{η}^{*} distribution

Reasonable agreement between data and model

- signal modelled using Powheg + Pythia
- will also compare to NLO + NNLL calculation (resummed)

 $66 \text{ GeV} < M_Z < 116 \text{ GeV}$ 0 < | Rapidity₇ | < 0.8

Systematic uncertainties

- Dominant systematic uncertainties (based on 7 TeV analysis around the Z peak) expected to be from:
 - estimation of the number of background events from:
 multi-jet / QCD background (estimation taken from data)
 tt
 t, Z/ $\gamma \rightarrow \tau^+ \tau^-$, W $\rightarrow l\nu$, and di-boson processes
 (~ 0.3%)
 - modelling of QED final state radiation (~ 0.3%)
 - important in correction of measured leptons to born, dressed and bare levels
 - modelling of detector angular resolution by Monte Carlo (~0.3%)
- Other uncertainties expected to be smaller
 - Iepton identification and trigger efficiencies
 - pileup effects
 - method for correcting for detector effects

Summary

Measuring triply differential cross section in ϕ^*_η , mass (M) and rapidity (y)

Definition of ϕ_{η}^* relies only upon well measured lepton directions

- A complementary probe to p_T of initial state radiation in Drell-Yan events
- Will correct data for detector effects and compare to NLO + NNLL resummed calculation

thanks to Lee Tomlinson and Terry Wyatt

Additional Material

13

Purity in di-muon channel

