Investigating The Microbunching Instability at Diamond Light Source

William Shields

Contents

- Introduction Diamond Light Source, CSR, & Microbunching Instability
- Instability Detection
- Dedicated setup for instability experiments
- Interferometer Installation & Results
- Future Plans.

8 Apr 2014

Diamond Light Source

Diamond can operate in numerous fill pattern modes, including hybrid, single bunch, & low-alpha optics.

Energy	3 Gev	
Circumference	561.6 m	
Rev. Freq.	533.820 KHz	
Beam Current	(typ.) 300 mA	
Emittance (h, v)	2.7, 0.03 nm rad	
Typical Size (h, v)	123, 6 μm	

Double bend achromat lattice, 48 Dipoles, 240 Quadrupoles, 168 Sextupoles, 22 insertion devices.

I. Martin, G. Rehm, C. Thomas, and R. Bartolini, Phys. Rev. ST Accel. Beams 14, 040705 (2011).

CSR and the Instability

• CSR - coherent synchrotron radiation generated by centripetally accelerating electrons:

Characterised by onset of coherent bursts of radiation, with a wavelength comparable to that of the bunch length (typ. 5 mm). Normally only observed as incoherent signal. Models exist to describe the instability but are non-trivial and do not provide a full description.

Theoretical model :

G. Stupakov and S. Heifets, Phys. Rev. ST Accel. Beams, 5, 054402 (2002)

Instability Detection

- Signal recorded is modulated to the bunch revolution frequency, over current range between 1.0 – 4.0 mA.
- Transitions with current represent switching from quasi-periodical bursting to chaotic.

- Schottky Barrier Diode (SBD) detectors, 60-90 GHz BW.
- Initial experimental setup was at a shared viewport.

ohn Adams Institute

Accelerator Science

8 Apr 2014

Dedicated mm-Wave Viewport

Fused Silica Second Viewport. parallelising mirror

8 Apr 2014

Cooled copper Mirror for x-ray absorption

Hi-tech absorber for reducing background signal

j John Adams Institute for Accelerator Science

Interferometer

- Laser aligned Michelson Interferometer successfully constructed independent of previous setup.
- Available space around the table is problematic; the solution was to translate the beam with a fixed mirror followed by a plate controlled by 2 actuators
- 3D stage setup still usable, but restricted to accommodate the interferometer.
- The interferometer includes: a 100 μ m thick silicon beamsplitter, 150mm linear translation stage, parabolic focusing mirror & a custom made detector holder.

Detectors

- Two types of detectors were used: Schottky Barrier Diode (SBD) detectors, and pyroelectric detectors.
- Previous experiments used smaller bandwidth SBD detectors in early stages of instability detection larger bandwidth used to investigate higher frequencies.

Detector	Quasi-Optical Schottky Barrier Diode	Pyroelectric
Frequency Range (GHz)	100 - 1000	100 – 30,000 +
Wavelength (mm)	3 – 0.3	3 - 0.01
Responsivity (V/W)	500	70,000
Noise Equivalent Power (pW/√hz)	10	1000

Single Bunch Interferograms

- Spectra recorded in independent experiments
- Spectra show
 frequencies observed
 between 100 and 200
 GHz, with a sharp low
 frequency cutoff.
- Frequency cutoff from detector sensitivity and diffraction effects in the interferometer.

Low alpha Interferograms

- Higher frequencies in the spectrum are observed between 100 and ~600 GHz.
- Clear differences in the spectra from two detectors, partly due to spatial resolution in the time domain scan but still an ongoing investigation.

Summary & Future Plans

- Observed bursting over wide bunch current range, and the beam / storage ring conditions to produce the instability are well known.
- Interferometer built and installed, with interferograms successfully recorded from both a single bunch in standard optics, and from low-alpha optics setup.
 FFT shows coherent emissions between 100-600 GHz.
- Incomplete spectra has proven problematic, further results / investigation is required & ongoing.
- Write a Thesis!!

Thank You

Any Questions?

John Adams Institute for Accelerator Science

Backup Slides

John Adams Institute for Accelerator Science

Instability Detection

2.0 MV

2.5 MV

2.2 (Y 2.0 te 1.8 3 1.6 1.4 1.2 15 Frequency (KHz) 220-330 GHz Detector, 3.5 RF Voltage 2.6 2.4 2.2 Current (mA) 1.8 1.6 1.4 1.2 Frequency (KHz)

60-90 GHz Detector, 3.5 RF Voltage

2.6

2.4

Bursting Detection

8 Apr 2014

Instability Evolution

- 1.001 mA 1.504 mA 1.504 mA 1.001 mA 2.5 10 2.5 104 Relative Power (dB) 101 101 2.0 2.0 (B) 103 ler ((m 1.5 W 1.0 Ê 1.5 od 102 WH 1.0 0.5 0.5 10⁰ 10° 5 10 15 Bursting Frequency (kHz) 5 20 Time (ms) Bursting Frequency (kHz) Time (ms) 1.805 mA 1.805 mA 2.342 mA 2.342 mA 2.5 10 2.5 104 2.0 Relative Power (dB) 101 101 2.0 (B) 10³ bower ((1.5 WW 1.0 (ue) 1.5 ¥ 1.0 Relativ 10° 0.0L 0.0 10° 20 5 10 15 Bursting Frequency (kHz) 5 10 15 Bursting Frequency (kHz) Time (ms) 3.150 mA 3.150 mA 4.210 mA 4.210 mA 10 2.5 (dB) 10³ 201 Construction (dB) 10¹ 10 2.0 2.0 କ୍<u>ସ</u> 10 (mu) MW 1. Ê 1.5 0.1 10°L 10 , 20 25 Time (ms) 10 5 20 25 Time (ms) 15 Bursting Frequency (kHz) Bursting Frequency (kHz)
- Evolution in time and frequency domains is evident
- Instability behaving as expected
- Need further DAQ development

Detector Sensitivity

- Detector sensitivity depends on impedance; amplifier input impedance is 10kΩ but sensitivity quoted for 1MΩ.
- Reduced sensitivity calculated by measuring I-V characteristics of the diodes.
- Data fit shows good agreement. The reduced sensitivity of the two SBD detectors is:

60-90 GHz: 500 mV/mW (previously 700) 220-330 GHz: 1000 mV/mW (previously 1500)

Is = Saturation Current Va = Applied Voltage Rs = Series Resistance Eta = Ideality Factor Vt = Thermal Voltage

 $S_1 = S_2 \overset{\text{a}}{\varsigma} \frac{R_L}{R_J + R_L} \overset{\text{o}}{\Rightarrow} \frac{R_L}{\dot{\varsigma}}$

S1 = Reduced Sensitivity S2 = Original Sensitivity RL = Load resistance Rj = Junction Resistance

(1). R.Buted, Zero bias detector diodes for the rf/id market,

John Adams Institute for Accelerator Science

Beam Splitter

- Silicon beamsplitter has a drop in efficiency at the observed cutoff (green). Slightly thinner splitter currently installed but efficiency drop shifted slightly.
- Investigation of beamsplitter thickness shows 80 μm substantially shifts efficiency drop to ~ 550 GHz.
- Drop in efficiency at lower frequencies can be accounted for.

System & DAQ

Instability Detection

- Schottky Barrier Diode (SBD) detectors, 60-90 GHz BW.
- Variations in RF cavity voltage, spectrum recorded for beam current between 1.0 4.0 mA
- Initial experimental setup was at a shared viewport (area divided by tape on window)

Low alpha Interferograms

- Clear interference observed. Natural decay in signal with stage position from intensity drop-off with distance
- FFT of the region around the interferogram reveals signal between approximately 150-250 GHz.

John Adams Institute for Accelerator Science