Evidence for Higgs Boson Decays to the $\tau^+\tau^-$ Final State with the ATLAS Detector

Carl Jeske

University of Warwick

carl.jeske@cern.ch

April 8, 2014

Carl Jeske (University of Warwick)

Evidence for $H \rightarrow \tau \tau$ in ATLAS

Overview

Introduction

2 Backgrounds

- 3 Boosted Decision Trees
- 4 Categorisation

- Search for the decay to $\tau\tau$ for 125 GeV Higgs boson using data collected by ATLAS during Run I of LHC
- First direct evidence for coupling to fermions
- Used multivariate analysis (MVA)
 - Exploits correlations between variables
 - Allows increase in sensitivity of search
- Dataset consists of 20.3 fb^{-1} of pp collisions at centre of mass energy $\sqrt{s} = 8$ TeV

- Three channels considered: both taus decaying to leptons ('leplep'), both decaying to hadrons ('hadhad') and one of each ('lephad')
- Focus on gluon-gluon fusion (ggF) and vector boson fusion (VBF) production mechanisms

- Used to model irreducible $Z \rightarrow \tau \tau$ background
- Muons removed from $Z \rightarrow \mu\mu$ data events and associated calorimeter deposits are subtracted
- Taus with same kinematics simulated using TAUOLA and added to each event
- Complex process but method has many benefits
 - Jets, MET and pileup conditions taken directly from data

- Jet $\rightarrow \tau$ fakes hard to model
- Hadhad and lephad channels need data driven methods to model fakes
- Hadhad use events where the two candidates do not have opposite charges
- Lephad use tau candidates failing final tau ID

- A boosted decision tree is a type of machine learning algorithm
- Exploits correlations between variables
- Increases sensitivity of search
- The $H \rightarrow \tau \tau$ BDT was used as the final discriminant in the analysis
- The BDT was trained using the 125 GeV signal samples so sensitivity is highest at 125 GeV

- Use two categories to target different Higgs production mechanisms
 - VBF: Two widely separated high energy jets, high sensitivity, 60% of signal in category are VBF
 - Boosted: Reconstructed Higgs has *p*_T > 100 GeV, good mass resolution, good sensitivity, 70% of signal is ggF

- Each category has a different BDT training using different sets of discriminating variables
 - For example, VBF category uses dijet mass and p_T
 - VBF BDT trained using only VBF Higgs sample as signal
 - Boosted category uses all Higgs signal samples

Example BDT Input Variables

- Common amongst all categories and channels
 - **Ditau Mass**: Discrimination against irreducible $Z \rightarrow \tau \tau$
 - Transverse Mass, m_T : Discrimination against W+jets
 - $\Delta R_{\tau\tau}$

- VBF
 - Dijet Kinematics: For tagging VBF signature of two high energy jets with large η gap
- Boosted
 - Sum p_T : Tags high p_T Higgs candidates
- Complete list in backup

Validation

- Modelling of all BDT input variables as well as the BDT score verified in each multiple validation regions
- Also checked the modelling of correlations between each pair of variables
- Dedicated validation regions for our major backgrounds

Validation

- Two additional validation regions
 - Mass Sideband: Signal region events not in the 100-150 GeV ditau mass window
 - Low BDT Score: Signal region events in the BDT score distribution up to signal efficiency of 30%

LepHad VBF Category Input Variables

Results

- The observed (expected) deviation from the background-only hypothesis corresponds to a significance of 4.1 (3.2) standard deviations
- This corresponds to a measured signal strength of $\mu = 1.4^{+0.5}_{-0.4}$
- This constitutes evidence for $H \rightarrow \tau^+ \tau^-$ decays
- Result consistent with Standard Model expectation for Higgs boson with $m_H = 125$ GeV

Results

- The observed (expected) deviation from the background-only hypothesis corresponds to a significance of 4.1 (3.2) standard deviations
- This corresponds to a measured signal strength of $\mu = 1.4^{+0.5}_{-0.4}$
- This constitutes evidence for $H \rightarrow \tau^+ \tau^-$ decays
- Result consistent with Standard Model expectation for Higgs boson with $m_H = 125$ GeV

Outlook

- Decay of new boson to fermions confirmed
- Run II
 - Trigger challenges
 - Spin/CP
 - $> 5\sigma$ observation
 - Potential for further evidence for fermionic decays by studying $H \to \mu \mu$

Backup

Preselection

- Preselection cuts used to remove any entirely background dominated regions
- Deliberately kept loose to maximise the benefit of utilising an MVA

Category	Selection	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had} \tau_{\rm had}$
	$p_T(j1) > (GeV)$	40	50	50
	$p_T(j2) > (GeV)$	30	30	30
VBF	$\Delta\eta(j1,j2)>$	2.2	3.0	2.0
	b-jet veto for jet $p_T > (GeV)$	25	30	-
	Higgs $M_{vis} > (GeV)$	-	40	-
	Higgs $p_T > (GeV)$	-	-	40
Boosted	$p_T(j1) > (GeV)$	40	-	-
	Higgs $p_T > (GeV)$	100	100	100
	b-jet veto for jet $p_T > (GeV)$	25	30	-

Variable	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had} \tau_{\rm had}$
$M_{ au au}^{MMC}$	•	•	•
$\Delta R_{ au au}$	•	•	•
$ \eta_{j2} - \eta_{j1} $	•	•	•
$m_{j1,j2}$	•	•	•
$\eta_{j1} \times \eta_{j2}$		•	•
$p_T^{\rm Total}$		•	•
$E_T^{miss}\phi$ centrality		•	•
$\mathit{min}(\Delta\eta_{\ell 1\ell 2, jets})$	•		
$\ell 1 imes \ell 2 \ \eta$ centrality	•		
$\Delta \eta_{j3,j1j2}$	•		
mT		•	
$\ell \; \eta$ centrality		•	
$ au_1 \ \eta$ centrality			•
$ au_2 \ \eta$ centrality			•

Boosted Variables

Variable	$\tau_{\rm lep} \tau_{\rm lep}$	$\tau_{\rm lep} \tau_{\rm had}$	$\tau_{\rm had} \tau_{\rm had}$
$M_{ au au}^{MMC}$	•	٠	•
$E_T^{miss}\phi$ centrality	•	•	•
$\Delta R_{ au au}$		•	•
sum P _T		•	•
$P_T(au_1)/p_T(au_2)$		•	•
$m_{ au au,j1}$	•		
$m_{\ell 1,\ell 2}$	•		
$\Delta \phi_{\ell 1,\ell 2}$	•		
sphericity	•		
$p_T^{\ell 1}$	•		
p_T^{j1}	•		
$E_T^{miss}/p_T^{\ell 2}$	•		
m_T		•	
$ au_{1x}$			•
$ au_{2x}$			•

BDT Score Distributions (Prefit)

Carl Jeske (University of Warwick)

Evidence for $H \rightarrow \tau \tau$ in ATLAS

April 8, 2014 24 / 25

Results

Carl Jeske (University of Warwick)