

Observation of W-Associated Single Top Production at 8TeV (Submitted to Phys. Rev. Lett. and arXiv:1401.2942)

Duncan Leggat Brunel University On behalf of the CMS Collaboration

Compact Muon Solenoid (CMS) UNIVERSITY

- One of two general purpose detectors at the LHC
- 100 metres underground in Cessy, France
- More than 3000 people from 182 institutes across 42 countries.
- Superconducting solenoid operates at 3.8T at 4K

8th April

tW Associated Production Duncan Leggat – Brunel University Brunel

Single Top Production

- Three main production modes of a single top quark: t-channel, s-channel and associated production with a W boson (tW).
- Tevatron has observed the t-channel and (very recently!) the s-channel (arxiv:1402.5126), but tW was not accessible due to the small production cross-section.
- CMS and ATLAS have presented evidence for tW at 7TeV (see backup slides)

tW Associated Production

• Associated production of a single top quark with a W boson

NLO+NNLL value: N. Kidonakis PhysRevD 82 (2010) 054018

Why is it interesting?

- Previously unseen
- Strong interference with $\ensuremath{t\bar{t}}$
- Direct measurement of $|V_{tb}|$. Sensitivity to new physics
- Background for several SUSY and Higgs searches

Event Signature:

- Two oppositely charged, isolated leptons (electrons and muons)
- Exactly one jet from a b-quark decay.
- Substantial missing E_{T} (two neutrinos)

arXiv:1401.2942, submitted to PRL

Backgrounds

- tt production is dominant background
 - σ = 245 pb at NNLO, ~10 times larger than tW.
 - Very similar final states only difference is one additional b-jet
 - Mixes with tW signal at NLO
- Other sources of background can be largely reduced through event selection
 - Z/γ^* + jets is second largest background
 - Small contributions from diboson, W+jets and other single top processes.

Analysis Flow

- Di-electron, di-muon or electron-muon triggers applied.
- Lepton Selection
 - Exactly two isolated, oppositely charged leptons. Events with additional low p_{τ} leptons are vetoed.
- Lepton pair invariant mass:
 - m_{\parallel} > 20 GeV to remove low-mass Drell-Yan (all channels)
 - Veto Z-mass window ($81 < m_{_{I}} < 101 \text{ GeV}$) in ee and mumu channels to remove Z backgrounds. Vetoed events used to model this background in the signal region.
- Further reduce Z/γ^* + jets background in ee and mumu channels by requiring missing E_{T} > 50 GeV.
- One signal region (1 b-tagged jet 1j1t) and 2 control regions (2 jets, 1 and 2 b-tags 2j1t and 2j2t). Control regions are enriched in tt background. Used to constrain tt background and extract b-tagging efficiencies.

Boosted Decision Tree

- BDT trained to discriminate tW signal and tt background.
- 200k MC events passing full signal 1j1t region cuts in both tW and tt dilepton samples.
- 13 variables used for BDT, chosen based on separation power and data/MC agreement in the control regions.

Variable	Description	
Nloosejets	Number of loose jets, $p_T > 20$ GeV, $ \eta < 4.9$	
NloosejetsCentral	Number of loose jets, $p_T > 20$ GeV, $ \eta < 2.4$	
NbtaggedLoosejets	Number of loose jets, $p_T > 20$ GeV, CSVM btagged	
$p_{T,sys}$	Vector sum of p_T of leptons, jet, and E_T^{miss}	
H_T	Scalar sum of p_T of leptons, jet, and E_T^{miss}	
Jet p_T	p_T of the leading, tight, b-tagged jet	
Loose jet p_T	p_T of leading loose jet, defined as 0 for events with no loose jet present	
$p_{T,sys}/H_T$	Ratio of $p_{T,sys}$ to H_T for the event	
Msys	Invariant mass of the combination of the leptons, jet, and $E_{\rm T}^{\rm miss}$	
centralityJLL	Centrality of jet and leptons	
H _{T,leptons} /H _T	Ratio of scalar sum of p_T of the leptons to the H_T of full system	
p _T -jll	Vector sum of p_T of jet and leptons	
$E_{\mathrm{T}}^{\mathrm{miss}}$	Missing transverse energy in the event	

700

600

500

400

300

200

100

Events

BDT Discriminant Distribution

BDT discriminant

Brunel

UNIVERSITY

D

O N

O N

Systematics

Systematic uncertainty	$\Delta \sigma$ (pb)	$\Delta \sigma / \sigma$
ME/PS matching thresholds	3.3	14%
Renormalization/factorization scale	2.9	12%
Top-quark mass	2.2	9%
Fit statistical	1.9	8%
Jet energy scale	0.9	4%
Luminosity	0.7	3%
Z+jets data/simulation scale factor	0.6	3%
tW DR/DS scheme	0.5	2%
tt cross section	0.4	2%
Lepton identification	0.4	2%
PDF	0.4	2%
Jet energy resolution	0.2	1%
b-tagging data/simulation scale facto	r 0.2	<1%
tt spin correlations	0.1	<1%
Pileup	0.1	<1%
Top-quark $p_{\rm T}$ reweighting	0.1	<1%
E ^{miss} modeling	0.1	<1%
Lepton energy scale	0.1	<1%
Total	5.5	24%

- Theory dominated
 - ME/PS matching in $t\bar{t}$
 - Normalisation scale (Q²)
 - Top quark mass
- Luminosity, lepton scale factors and tt cross-section treated as rate uncertainties, all others shape uncertainties.

Statistical Method

- Likelihood fit to BDT discriminant in all three regions of all channels.
- Signal and background templates are taken from MC, with systematic uncertainties taken into account as variations on these templates.
 - Systematics included in the fit as nuisance parameters.

Significance

- Maximum likelihood method used
- Pseudo-experiments cast with signal strength set to 0
- p-value is the fraction of pseudo-experiments with a defined likelihood function larger than that for the data.

Cross Section

- Profile likelihood fit
- Cross section and 68% confidence level estimated
- Theory uncertainties not included in the fit, added in by hand afterwards.

Results

Submitted to Phys. Rev. Lett. arXiv:1401.2942

- **6.1** σ excess of events over expected background is observed, compared to simulation only expected **5.4**^{+1.5}_{-1.4} σ
- Measured cross-section is 23.4^{+5.5} pb.
- V_{tb} estimation:

SM: 22 ± 0.6 ± 1.4 pb

$$|V_{tb}| = 1.03 \pm 0.12 \text{ (exp.)} \pm 0.04 \text{ (th.)}$$

• Assuming SM $0 \le |V_{tb}| \le 1$, a lower bound at 95% CL:

 $|V_{tb}| > 0.78$

Assumes: $|V_{tu}| = |V_{ts}| = 0$ SM-like interactions

• ATLAS sensitivity:

Observed: 4.2σ Expected: 4.0σ Cross section: 27.2±5.8 pb

ATLAS-CONF-2013-100

Cross Check Analyses I Cut and Count

- Cross check of BDT's robustness
- Same event selection and control regions, with additional cuts
 - Veto events with any additional b-tagged jets
 - $H_{T} > 160 \text{ GeV}$ in eµ channel
- Fit directly to event counts

Observed Significance: 3.6σ Expected Significance: $2.8^{+0.9}_{-0.8}\sigma$ Measured Cross Section: $33.9^{+8.6}_{-8.6}$ pb

Cut and count alone provides evidence of tW

Cross Check Analysis II p_{T,sys} Fit

- Same cuts as cut and count cross check
- Fits the transverse momentum of the system the vector sum of the p₁ of the two leptons, jet and MET.

Conclusions

- CMS has previously provided evidence for tW associated production, which was not accessible at the tevatron, at 7TeV and has now provided the first observation using 8TeV proton-proton collisions.
- Separation of signal and tt background is the main difficulty.
- 6.1 σ significance, 23.4^{+5.5}_{-5.4} pb.
- Two cross check analyses provided as test of BDT robustness. All are consistent and cross checks achieve evidence on their own.
- Available online (arXiv:1401.2942) and submitted to PRL.
- Systematic (not statistics) dominated.
- Future plan is to reduce uncertainty on measured cross-section at 8TeV by using larger statistics and improving theory uncertainties.
- tW cross-section grows the most of single top processes (~3.8) from 8 to 13TeV (Run-2 to begin in 2015), scaling favourably compared to tt (~4).
- Finally, many thanks to STFC for their studentship support and to Brunel University for their continued support in my ongoing work!

Backup Slides

Diagram Removal/Diagram Subtraction

- tW signal mixes strongly with top quark pair production at NLO. Two schemes to avoid a problem:
 - Diagram Removal (DR) remove doubly resonant diagrams from signal definition
 - Diagram Subtraction (DS) subtract guage-invariant term to cancel tt
 contribution
- DR chosen for analysis, but the two are shown to be consistant within statistical uncertainties, and the difference is included as a systematic uncertainty.

7 TeV – Evidence of tW

- Dilepton channel, using 4.9 fb⁻¹ 7 TeV data
- BDT with 4 variables, cut and count cross-check
- PRL110(2013)022003 published 11th Jan 2013

Brunel ATLAS: Evidence for tW at 7TeV

- Dilepton channel with 2.05 fb⁻¹ 7TeV pp data
- Exactly 1 jet signal region. 22 variable BDT p_i of the system is most powerful variable.
- Phys.Lett.B 716 (2012) 142-159

D

Object Selections 1

• Electrons

- Gsf electrons, $p_T > 20$ GeV, $|\eta| < 2.5$, rellso < 0.15 ($\Delta R < 0.3$)
- IP < 0.04cm from beam spot
- Loose Electrons
 - p_T > 10 GeV, |η| < 2.5
- Muons
 - PF, Global and Tracker muons, $p_T > 20$ GeV, $|\eta| < 2.4$, rellso < 0.20 ($\Delta R < 0.3$)
- Loose Muons
 - $p_{_{T}} > 10$ GeV, $|\eta| < 2.4$

Object Selections 2

• Jets

- PF anti- k_{T} jets, JEC applied
- $p_{T} > 30 \text{ GeV}, |\eta| < 2.5$

• B-tagging

- Combined Secondary Vertex, medium working point
- Reweighted with p_{T} dependent scale factors (MC only)

Loose Jets

- Failing above 'tight' criteria
- $p_{_{T}}$ > 20 GeV, $|\eta|$ < 4.9 (2.4 for 'central')
- Missing Transverse Energy (MET)
 - PF MET, type I corrected

Signal and Control Regions

- Three regions are defined in the analysis:
 - Signal Region: Exactly 1, b-tagged jet (1j1t). (15-20% tW, 75% tt, 5% Z+jets)
 - tt Control Regions: Exactly 2 jets, with either 1 (2j1t) or 2 b-tags (2j2t). Enriched in tt: ~92% in 2j1t and ~97% in 2j2t.
- Z+jets control region (vetoed events within the Z-mass window) used to reweight Z+jets MC.
 CMS, √s = 8TeV, L=12.2 fb⁻¹

Input Variable Distributions I

• Signal region BDT input variable distributions:

tW Associated Production Duncan Leggat – Brunel University

Input Variables Distributions II

Brunel

D

 \mathbf{O}

UNIVERSI

Ν

BDT Discriminant in DY Dominated Control Region

