Near Detector Studies in LAGUNA-LBNO

Tom Stainer

University of Liverpool

8 April 2014

LAGUNA-LBNO

Large Apparatus studying Grand Unification and Neutrino Astrophysics - Long Baseline Neutrino Oscillations

- Design feasibility study 2011 2014
- 7 potential sites and 3 potential detector technologies
- Unique position to host a baseline of 2300km
- Up to 100kton detectors

Long Baseline Physics - 2300 km

Physics

- Determine mass hierarchy $>5\sigma$
- CP violation at 90% C.L for \sim 60% of δ_{CP} parameter space
- Requires both Near and Far detectors
- On axis u_{μ} beam wide band beam
- Near Detector at CERN, Geneva -800 m from the beam target
- Far Detector at Pyhäsalmi, Finland -2300 km from CERN
 - Deepest mine in Europe at 1440m depth

The gas TPC for the Near Detector

Requirements

- Target to match Far detector \rightarrow Liquid Argon (LAr)
- LAr neutrino rate too high for Near Detector (ND)
- Deal with high multiplicity events
- Use \rightarrow Gas Argon
- Proven detector technology
- Gas at 20 bar, density 35kgm⁻³
- Volume 2 \times 2 \times 2 m³
- Mass \sim 280 kg

The Near Detector Concept

- Time Projection Chamber (TPC) \rightarrow 0.3 tons
 - Primary detector target
 - Momentum measurements
 - Vertex location and tracking
- Totally Active Scintillator (TAS) → 30.0 tons
 - Fully surrounding TPC
 - Neutral particle identification
 - Muon/Pion seperation
 - Carbon target for cross sectional measurements
- Pressure Vessel \rightarrow 5 m diameter, 5 m length
- Magnet \rightarrow 0.5 T dipole

The Near Detector Design

- Geometry implemented in ROOT
- Required bespoke software
- Designed software package of GENIE (Neutrino Generator), GEANT and others
 - Read in neutrino primary vertices from flux file
 - Project to ND
 - Neutrino interactions generated
 - Secondaries tracked and recorded
 - Reconstruction and analysis

Geometry as shown in ROOT display

Event Display

Trajectories:IKE>70.0

$$\mathsf{CCQE} \text{ event } \mu + \mathbf{p}$$

Event Display

$$\nu + \pi^+ + n$$

Tom Stainer - University of Liverpool

Near Detector Studies in LAGUNA-LBNO

Event Display

Particles from Neutrino Interactions in TPC

- Exposure 1.22×10^{20} p.o.t
- 345228 events (94% ν_{μ})
- High energy beam → DIS events
- Large multiplicities ~ 6.5 particles per neutrino event
- Beam spill of 3.5×10^{13} p.o.t

particle	count		
р	647631 (28.9%)		
n	533868 (23.9%)		
π^+	277825 (12.4%)		
π^0	265408 (11.9%)		
μ^-	243577 (10.9%)		
π^{-}	144379 (6.5%)		
γ	23000 (1.0%)		
μ^+	11953 (0.5%)		
e ⁻	2981 (0.1%)		
e ⁺	439 (<0.1%)		
other	86120 (3.8%)		
Total	2237481 (excluding ν)		

Primaries from entire gas volume

Can expect 0.0116 \pm 0.0002 (stat) u_{μ} events / spill / m³

Neutrinos also interact outside TPC \rightarrow Rock + Outer Detector

- Muons from these interactions contribute significantly to TPC rate
- Similar energy spectrum to ν TPC interactions
- Rock muons $\sim 2 \mu$ / spill / m³
- Interactions in TPC \sim 0.01 μ / spill / m^3

The kinetic energy spectrum for muons in the TPC for neutrino interactions in and outside the TPC.

For every 1 muon track from TPC get 200 from rock!

Particles Leaving the TPC

What is leaving the TPC?

- Key for next stages of detector design
- TPC alone is not enough

Momentum Reconstruction in the TPC

- Only tracks with hits (energy deposition points) recorded
- Calculate sagitta from truth momentum
- $\bullet~s=BL^2$ / 26.7 $p_{\textit{truth}}$
- ds = 300 μ m (T2K ND280)
- $\bullet\,$ Smear this value and recalculate $p=BL^2$ / 26.7 s
- $\bullet\,$ Sum momentum for each track \to Reconstructed neutrino momentum
- 20 cm fiducial cut applied
- Require at least 3 hits per track

 $\nu + {\sf n} \rightarrow {\sf I} + {\sf p}$

Status and Next Steps

Summary:

- LAGUNA-LBNO physics motivation strong
- Constructed software framework adaptable to many experiments
- Studies very relevant for other LB experiments LBNE
- Initial studies show ND capabilities
- Design study ends Sep 2014

Backup Slides

ND Placement and Incident Flux

- ND placement from the beam target is limited to 800 1000 m
- $\bullet\,$ Beam muons to much for < 800 m
- Engineering costs and restrictions for > 1000 m

Neutrino flux incident on ND at 800, 900 and 1000 m from the target

Neutrino flux incident on the ND showing flavour composition of the beam at 800 m

Further Distances for 2.4×2.4×3 m TPC

- Include distances of 900 and 1000m
- \bullet Moving to 1000m can reduce rock muons by ${\sim}1/3$
- Signal/background ratio does not change

distance [m]	800	900	1000
$ u $ inside TPC [μ/m^2 /spill]	0.0250 ± 0.0004	0.0204 ± 0.0003	0.0159 ± 0.0002
$ u$ outside TPC [$\mu/m^2/spill$]	6.11 ± 0.05	4.92 ± 0.04	3.98 ± 0.04
outside/inside ratio	244.4 ± 4.4	241.2 ± 3.1	250.3 ± 4.0

*All errors are statistical only