



# D-mixing as input for model-independent determinations of the CKM phase $\gamma$



# Sam Harnew





#### Outline

- ▶ CKM Phase  $\gamma$
- D-Mixing Formalism
  - How does this relate to  $\gamma$
- $\blacktriangleright$  D-Mixing at LHCb in  $D \to K^+\pi^-\pi^+\pi^-$  Decays





# CP Violating Phase $\gamma$

- Angle γ is a CP violating phase in the CKM matrix.
  - Least constrained angle of the 'unitary triangle'.



• A sensitive decay is  $B^+ \to DK^+$  where  $D \to K^- \pi^+ \pi^- \pi^+$ .

 $\mathbf{R} \left( B^- \to DK^-, \ D \to K^+ \pi^- \pi^+ \pi^- \right) \propto r_B^2 + r_D^2 + 2r_B r_D R_D^{K3\pi} \cos(\delta_D^{K3\pi} + \delta_B - \gamma)$ 

 $\mathbf{R} \left( B^+ \to DK^+, \ D \to K^- \pi^+ \pi^- \pi^+ \right) \propto r_B^2 + r_D^2 + 2r_B r_D R_D^{K3\pi} \cos(\delta_D^{K3\pi} + \delta_B + \gamma)$ 

- But need input from several parameters related to D decay amplitudes and phase space integration.
  - Use D-mixing to constrain the D related parameters.





## **D-Mixing**

- Mixing is when a neutral meson oscillates to its anti-particle.
  - Well established in K and B mesons.
  - Recently been observed in D mesons.
- D-Mixing is thought to be dominated by long range processes.







# **D**-Mixing

- Define the mass eigenstates as a superposition of flavour eigenstates.
  - CP conservation assumed here.

$$|D_1\rangle = |D^0\rangle + |\overline{D^0}\rangle |D_2\rangle = |D^0\rangle - |\overline{D^0}\rangle$$

- At production and decay the D meson is in a flavour eigenstate.
  - But propagates as a superposition of mass eigenstates  $\rightarrow$  mixing!
- Mixing is parameterised by two dimensionless parameters:

$$x \equiv \frac{m_1 - m_2}{\Gamma}$$
  $y \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma}.$ 

Sam Harnew







- ▶ Now look at the specific case of mixing in Wrong Sign  $D^0 \to K^+ \pi^- \pi^+ \pi^-$  decays.
- There are two routes from the initial to the final state...







 $\begin{aligned} \mathbf{R} \big[ D^0 \to K^+ \pi^- \pi^+ \pi^- \big](t) &= e^{-\Gamma t} \left[ \mathcal{A}_{\mathrm{DCS}}^2 + \mathcal{A}_{\mathrm{DCS}} \mathcal{A}_{\mathrm{CF}} R_D^{K3\pi} y' \Gamma t + \mathcal{A}_{\mathrm{CF}}^2 \frac{x^2 + y^2}{4} \left( \Gamma t \right)^2 \right] \\ \mathcal{A}_{\mathrm{DCS}}^2 &= \int |\mathcal{A}(\mathbf{p})_{\mathrm{DCS}}|^2 \mathrm{d}\mathbf{p} \end{aligned}$ 

Phys.Lett. B728, 296302, 2014









$$\begin{split} &\mathbf{R}\big[D^0 \to K^+ \pi^- \pi^+ \pi^-\big](t) = e^{-\Gamma t} \left[ \mathcal{A}_{\mathrm{DCS}}^2 + \mathcal{A}_{\mathrm{DCS}} \mathcal{A}_{\mathrm{CF}} R_D^{K3\pi} y' \Gamma t + \mathcal{A}_{\mathrm{CF}}^2 \frac{x^2 + y^2}{4} \left(\Gamma t\right)^2 \right] \\ &\mathcal{A}_{\mathrm{CF}}^2 = \int |\mathcal{A}(\mathbf{p})_{\mathrm{CF}}|^2 \mathrm{d}\mathbf{p} \\ &x, y \text{ are dimensionless mixing parameters} \end{split}$$

Phys.Lett. B728, 296302, 2014







 $\begin{aligned} &\mathbf{R} \Big[ D^0 \to K^+ \pi^- \pi^+ \pi^- \Big] (t) = e^{-\Gamma t} \left[ \mathcal{A}_{\mathrm{DCS}}^2 + \mathcal{A}_{\mathrm{DCS}} \mathcal{A}_{\mathrm{CF}} R_D^{K3\pi} y' \Gamma t + \mathcal{A}_{\mathrm{CF}}^2 \frac{x^2 + y^2}{4} (\Gamma t)^2 \right] \\ &y' = y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi} \end{aligned}$ 

 $R_D^{K3\pi}$  - Coherence Factor  $\qquad \delta_D^{K3\pi}$  - Average Strong Phase Difference

Phys.Lett. B728, 296302, 2014

Sam Harnew





# Multibody Decays and the Coherence Factor

- $D \rightarrow K^+ \pi^- \pi^+ \pi^-$  has a 5 dimensional phase space.
- Strong phase varies over this space.
  - Interference between CF and DCS amplitudes varies.
- Integrating over this variation dilutes the interference term.
  - 'Dilution' is parameterised by the coherence factor  $R_D^f$ .
  - Average phase difference amplitudes given by  $\delta_D^f$ .



[1] Phys.Lett. B731, 197203, 2014

Cleo-c [1]







# **Right Sign** $D^0 \rightarrow K^- \pi^+ \pi^- \pi^+$ **Decays**



 $\mathbf{R} \left[ D^0 \to K^- \pi^+ \pi^- \pi^+ \right] (t) = \mathcal{A}_{\mathrm{CF}}^2 e^{-\Gamma t}$ 

- Use Right Sign decays as a normalisation channel
- These are completely dominated by the Cabibbo Favoured Amplitude (no Mixing).





WS to RS ratio



$$r(t) = \frac{\Pr[D^0 \to K^+ \pi^- \pi^+ \pi^-](t)}{\Pr[D^0 \to K^- \pi^+ \pi^- \pi^+](t)} = r_D^2 + r_D R_D^{K3\pi} y' \Gamma t + \frac{x^2 + y^2}{4} (\Gamma t)^2$$

- By taking the ratio of WS to RS decays it is possible to cancel many detection and selection efficiencies
- $r_D$  is the ratio  $\mathcal{A}_{\mathrm{DCS}}/\mathcal{A}_{\mathrm{CF}}$





# CP Violating Phase $\gamma$

• Rate for  $B^+ \to DK^+$  where  $D \to K^- \pi^+ \pi^- \pi^+$ :

 $\mathbf{R} \left( B^- \to DK^-, \ D \to K^+ \pi^- \pi^+ \pi^- \right) \propto r_B^2 + r_D^2 + 2r_B r_D R_D^{K3\pi} \cos(\delta_D^{K3\pi} + \delta_B - \gamma)$ 

 $\mathbf{R} \left( B^+ \to DK^+, \ D \to K^- \pi^+ \pi^- \pi^+ \right) \propto r_B^2 + r_D^2 + 2r_B r_D R_D^{K3\pi} \cos(\delta_D^{K3\pi} + \delta_B + \gamma)$ 

Expression for WS/RS ratio:

 $r(t) = r_D^2 + r_D R_D^{K3\pi} \left( y \cos \delta_D^{K3\pi} - x \sin \delta_D^{K3\pi} \right) \Gamma t + \frac{x^2 + y^2}{4} \left( \Gamma t \right)^2$ 

• Highlighted parameters show up in both expressions.





# LHCb Dataset

- Use  $1.0 fb^{-1}$  of data collected by the LHCb detector.
- ► Approximately 3.5 million tagged  $D \to K^+ \pi^- \pi^+ \pi^-$  candidates after all selection requirements.
  - $D^{+*} \rightarrow D^0 \pi^+$  decays tag the flavour of the D.
- ► Fit  $\Delta m = m(K\pi\pi\pi\pi) m(K\pi\pi\pi)$  to distinguish signal from background.







# **Mixing Significance**

- Fit  $\Delta m$  in bins of lifetime to get WS/RS ratio.
- Look at the Δχ<sup>2</sup> to evaluate the significance between mixing and no-mixing hypotheses.







# WS to RS ratio

- $\blacktriangleright$  Interested in parameters related to D decay amplitudes.
  - Constrain mixing parameters x and y to their PDG averages.



 $r_D = 0.0591 \pm 0.0012$ 

$$R_D^{K3\pi}y' \quad = 0.0026 \pm 0.0012$$

 $x = 0.0060 \pm 0.0018$ 

$$y = 0.0073 \pm 0.0011$$

LHCB UNOFFICIAL STATISTICAL ONLY

$$r(t) = r_D^2 + r_D R_D^{K3\pi} y' \Gamma t + \frac{x^2 + y^2}{4} (\Gamma t)^2$$





#### **Coherence Factor**

- Likelihood scan in the physical region of  $R_D^{K3\pi}$  and  $\delta_D^{K3\pi}$ .
- $\chi^2_{MIN}$  follows a curve in the 2D plane.







# **Cleo-c Combination**

- $\blacktriangleright$  Cleo-c measurement using quantum correlated  $\psi(3770)$  decays.
- Different shaped confidence regions give nice LHCb and Cleo-c combination.







#### Conclusions

- Further constraining  $R_D^{K3\pi}$  can improve sensitivity to the CKM phase  $\gamma$ .
- ► Substantial improvements can be made by studying the time dependence of WS  $D^0 \rightarrow K^+ \pi^- \pi^+ \pi^-$  decays at LHCb.
- ▶ Another  $2fb^{-1}$  of data to add to the  $1.0fb^{-1}$  already presented.