Time-dependent measurements of CP violation in charm IOP HEPP & APP Meeting 2014, Royal Holloway University

Mark Smith on behalf of the LHCb Collaboration

University of Manchester

8 April 2014

The University of Manchester

Introduction

Charm mixing:

$$|D_{1,2}\rangle = p |D^0\rangle \mp q |\overline{D}^0\rangle$$

$$x = \frac{\Delta m}{\Gamma}$$
 $y = \frac{\Delta \Gamma}{2\Gamma}$

- In the Standard Model CP violation is expected to be small.
- Significant enhancements are an indication of New Physics.

<ロ> (日) (日) (日) (日) (日)

Asymmetry of D^0 and \overline{D}^0 decay rates to a *CP* eigenstate, K^+K^- or $\pi^+\pi^-$:

$$A_{\Gamma}(KK) = \frac{\hat{\Gamma}\left(D^{0} \to K^{+}K^{-}\right) - \hat{\Gamma}\left(\overline{D}^{0} \to K^{+}K^{-}\right)}{\hat{\Gamma}\left(D^{0} \to K^{+}K^{-}\right) + \hat{\Gamma}\left(\overline{D}^{0} \to K^{+}K^{-}\right)} \approx \frac{A_{m} + A_{d}}{2}y\cos\phi - x\sin\phi$$

In the SM:

 $\bullet~\sim 10^{-4}$ Bigi et al. JHEP 06 (2011) 089

 Roughly final state independent Kagan and Sokoloff, Phys. Rev. D 80 (2009) 07600

$$\Delta A_{\Gamma} = A_{\Gamma}(KK) - A_{\Gamma}(\pi\pi) \approx \Delta A_{d}y \cos\phi + (A_{m} + A_{d})y\Delta\cos\phi - x\Delta\sin\phi$$

Large A_{Γ} or final state dependence is indicative of New Physics.

メロト メポト メヨト メヨ

In mixing parameter y is defined as:

$$y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

Introducing CP violation into mixing one can finds:

$$y_{CP} = \frac{\hat{\Gamma}\left(D^0 \to K^+ K^-\right)}{\hat{\Gamma}\left(D^0 \to K^- \pi^+\right)} - 1 \approx \left(1 - \frac{1}{8}A_m^2\right) y \cos\phi - \frac{1}{2}A_m x \sin\phi$$

- In the limit of no CP violation $y_{CP} \rightarrow y$
- Can be seen as a mixing measurement
- Deviation of y_{CP} from y indicates CP violation in mixing
- From the Heavy Flavour Averaging Group (HFAG)

•
$$y = 0.67^{+0.07}_{-0.08}\%$$

• $y_{CP} = (0.866 \pm 0.155)\%$

M Gersabeck et al. 2012 J. Phys. G: Nucl. Part. Phys. 39 045005

イロト イヨト イヨト イヨ

Forward spectrometer.

• Acceptance $2 < \eta < 5$

Data set • 2011: 1*fb*⁻¹ at 7TeV 2.5 ntegrated Luminosity by year [fb⁻¹] 2012 2012: 4 + 4 TeV Delivered Luminosity 2.21 fb Recorded Luminosity 2.08 fb 2 1.5 vered Luminosity 0.04 fb 201

Aug

Oct

Jun

- 3 level trigger:
 - L0 hardware selects events with high p_T particles.
 - Two layers of software triggers.
- Output at \sim 5kHz

0.5

Apr

Dec Date

LHCb

- Forward spectrometer.
- Acceptance $2 < \eta < 5$

- 3 level trigger:
 - L0 hardware selects events with high p_T particles.
 - Two layers of software triggers.
- $\bullet~{\rm Output}$ at $\sim 5 {\rm kHz}$

Data set

- 2011: 1*fb*⁻¹ at 7TeV
- 2012: 2*fb*⁻¹ at 8TeV

Charm

 $\begin{aligned} \sigma_{b\bar{b},acc} &= 75.3 \pm 14.1 \mu \text{b at 7TeV} \\ \text{Phys. Lett. B694 209-216} \\ \sigma_{c\bar{c},acc} &= 1419 \pm 134 \mu \text{b at 7TeV} \\ \text{Nucl. Phys. B871, 1-20} \end{aligned}$

- A_{Γ} paper has been published by PRL. PRL 112 (2014) 041801
- Due to the large $K^-\pi^+$ data set the y_{CP} analysis is to follow.

 $1 f b^{-1}$ of pp collisions collected in 2011.

• Data split into 8 samples; D^0 , \overline{D}^0 , magnet polarity, July TS.

Channel	No. of candidates
$D^0 ightarrow K^- \pi^+$	34.1 million
$D^0 ightarrow K^+ K^-$	4.8 million
$D^0 ightarrow \pi^+\pi^-$	1.6 million

Measure effective lifetimes of D^0 decaying to K^+K^- , $\pi^+\pi^-$ and $K^-\pi^+$ to extract y_{CP} and A_{Γ} ('unbinned method') - presented here. Additionally use an alternative method ('binned method') to ascertain A_{Γ} - see backup.

< □ > < 同 > < 回 > < Ξ > < Ξ

Prompt:

- Look for the decay $D^{*+} \rightarrow D^0 \pi_{\rm s}^+$.
- Charge on π_s^+ signifies D^0 flavour.

Prompt backgrounds:

- Random π_s^+ mis-tag:
 - Separated out by fit of difference between D^{*+} and D⁰ masses, Δm.
- D⁰ from B decays secondaries:
 - $\ln(\mathrm{IP}\chi^2)$ used as a discriminating variable.

Image: A math a math

Extract mean effective lifetimes of D^0 (\overline{D}^0) by means of a fit to D^0 decay times.

• Acceptance biases due to the selection corrected for using the "swimming" method. JHEP 04 (2012) 129

Two stage fit process:

- Fit m_{D^0} and Δm simultaneously to separate signal and background.
- Mis-reconstructed background shapes in K^+K^- taken from simulation.
- Simultaneous fit to D^0 decay time and $\ln(\mathrm{IP}\chi^2)$ to extract the prompt signal mean lifetime.

<ロト < 同ト < 国ト < 国

- Unbinned maximum likelihood fit to D⁰ mass and Δm to determine signal and backgrounds.
- Separate out:
 - Random π_s^+
 - Combinatoric
 - Mis-reconstructed decays in the *K*⁺ *K*⁻ final state

A_{Γ} - ln(IP χ^2) fit

$$\overline{\mathsf{D}}{}^0 o \mathsf{K}^+\mathsf{K}^-$$

The $\ln(\mathrm{IP}\chi^2)$ fit is used to separate prompt and secondary signal and random $\pi^+_{\rm s}$.

- Prompt and secondary signal and $\pi_{\rm s}^+$ background are described by parametric PDFs.
- Their fit parameters are allowed to evolve in time.
- Secondary components show significant time dependence.
- Background PDFs are constructed by applying kernel density estimators to sPlots.

Image: A math a math

A_{Γ} - Result

 $\overline{D}{}^0
ightarrow K^+ K^-$

Several cross checks were carried out:

- D⁰ lifetime measured using the K⁻π⁺ data; τ = (412.9 ± 0.1)fs, compared to the PDG value of τ = (410.1 ± 1.5)fs.
- Null tests.
- Checked dependencies on kinematics, number of PVs in the event, trigger selections etc.
- Simulations with varying configurations.

Effect	$A_{\Gamma} (K^{+}K^{-}) \times 10^{-3}$	$A_{\Gamma} (\pi^{+}\pi^{-}) \times 10^{-3}$
Mis-reconstructed bkg.	±0.02	± 0.00
Charm from B	± 0.07	± 0.07
Other backgrounds	±0.02	± 0.04
Acceptance function	± 0.09	± 0.11
Total	±0.12	± 0.14

< □ > < ^[] >

A_{Γ} - HFAG average

・ロン ・回 と ・ ヨン・

・ロト ・回ト ・ヨト ・

- We have made the most accurate measurement of CP violation in charm mixing to date.
- No CP violation or final state dependence has been found at this level of precision.
- y_{CP} result is to follow shortly.
- $2fb^{-1}$ of 2012 data still to be analysed.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

The University of Manchester

・ロト ・回ト ・ヨト ・ヨト

A_{Γ} competition

MANCHESTER 1824 The University of Manchester

y_{CP} competition

HFAG-charm CHARM 2012 0.732 ± 2.890 ± 1.030 % E791 1999 $3.420 \pm 1.390 \pm 0.740 ~\%$ **FOCUS 2000** $-1.200 \pm 2.500 \pm 1.400$ % **CLEO 2002** $0.110 \pm 0.610 \pm 0.520$ % **Belle 2009** $0.550 \pm 0.630 \pm 0.410$ % LHCb 2012 $1.110 \pm 0.220 \pm 0.110~\%$ **Belle 2012** $0.720 \pm 0.180 \pm 0.124$ % BaBar 2012 0.866 + 0.155 % World average -4 -3 -2 -1 0 1 2 3 5 4 $y_{CP}(\%)$

イロト イヨト イヨト イヨト

Use an alternative method to measure A_{Γ} . Measure the ratio of D^0 and \overline{D}^0 yields in bins of decay time.

$$R(t, t + \Delta t) \approx \frac{N_{\overline{D}0}}{N_{D^0}} \left(1 + \frac{2A_{\Gamma}}{\tau_{KK}}t\right) \frac{1 - e^{\frac{\tau_{\overline{D}0}}{\tau_{D^0}}}}{1 - e^{\frac{-\Delta t}{\tau_{D^0}}}}$$

- Fit m_{D^0} , Δm , and $\ln(\text{IP}\chi^2)$ to find yields.
- Plot ratio as function of decay time and fit.

イロト イヨト イヨト イ

$$\overline{D}{}^0
ightarrow K^+ K^-$$
, 0.74ps-0.78ps

A_{Γ} - Binned method

 $K^+ K^-$

The binned results are consistent with those from the unbinned fit.

・ロト ・回ト ・ヨト