Supersymmetry searches with 3 leptons in the final state with the ATLAS detector at the LHC.

IoP HEP Meeting

08-April-2014

Outline

- SUSY
 - Motivation
 - Models
- ATLAS Data
- 3L SUSY Searches
 - Analysis Overview
 - Latest Results
 - (http://arxiv.org/abs/1402.7029)

SUSY

Proposes a symmetry between fermions and bosons

New fields
differing in spin
by ½ with
respect to their
SM partners

Solves hierarchy problem

Provides dark matter candidate*
Unification of gauge coupling constants

The Standard Model

Supersymmetry

Charginos ($\tilde{\chi}_{i}^{\pm}$) and neutralinos ($\tilde{\chi}_{j}^{0}$) are mass eigenstates of the super-partners of SM gauge fields.

R-Parity
Conserving
models =>
*LSP

Mass generation

In nature, we expect low fine tuning \longrightarrow masses of higgsinos, stops and gluinos must be light

SUSY:: Motivation

Cross-section of production of SUSY particles

From all SUSY particles that can originate from the p-p collisions, electroweakino production can be a promising discovery mode at the LHC if we assume natural SUSY.

$$\tilde{\chi}_1^{\pm} \, \tilde{\chi}_2^0$$

In particular, pairs decay into final states with three leptons and missing energy

This makes for a clean SUSY signature.

SUSY:: Simplified Models

- → Simulate one process only.
- Minimal particle content
- → Assumptions on the BR.
- → The relevant particle masses are the only free parameters

We explore four simplified models where the $\tilde{\chi}_1$ and $\tilde{\chi}_2^0$ are the only directly produced SUSY particles, these are classified according to the intermediate particles in the decay chain:

3L analysis:: Event Selection

• Select event with exactly 3 leptons (e, μ , $\underline{\tau}$).

- Exploring three <u>different tau multiplicities in the final state</u>
 - 0Tau+3(e,mu)
 - 1Tau+2(e,mu)
 - 2Tau+1(e,mu)
- Veto events containing b-tagged jets.

• Require high missing transverse energy .

3L analysis:: Background Estimation

3L analysis:: **Validation Regions****

We estimate the Standard Model background in dedicated regions:

Thorough validation of the modelling of our main backgrounds WZ, ttbar, W/Z+jets using these VR

3L analysis:: Signal regions**

Five signal regions targeting different scenarios

mSFOS:= mass of a pair of light leptons with opposite charge and same flavour closest to the Z

mT:= transverse mass of the third lepton (not part of SFOS) and missingET coming from the W.

US University of Sussex **more details in the backup

3L analysis:: Results: 0taus+3(e,mu)

SR0Ta

Overall very good agreement between data and expectation

SR0τa bin

Events

Data/SM

[http://arxiv.org/abs/1402.7029]

3L analysis:: Results: 2taus+1e,mu (top)

1tau+2e,mu (bottom)

We interpret these results in

5 pMSSM models* and 4 simplified models*

By statistically combining all orthogonal signal regions (choosing between SR2a and SR2b).

3L analysis:: Latest Results

New limits

Via Wh

Improved limits

Via WZ

Statistical combination of SR0a, SR0b, SR1SS, SR2a

Statistical combination of SR0a, SR0b, SR1SS, SR2b

First ATLAS
SUSY paper
including SM
higgs decays

A search for direct production of gauginos in 3 lepton final state with 20.3 fb-1 of all the 8 TeV data has been presented.

New and improved sensitivity for many different SUSY scenarios

- * Inclusion of hadronic taus in the final state
- * SR re-optimisation in 3(e,mu)+0tau channels
 - Binned approach
 - SFOS veto.
- * Interpretation in new models.

No significant deviation from SM observed

* Exclusion limits were set on 9 models:

5 pMSSM and 4 simplified models

World-leading limits set on mass of charginos and neutralinos

University of Sussex

Backup

3L analysis:: Validation Regions

We estimate the Standard Model background in dedicated regions:

	$N(\ell)$	$N(\tau)$	Flavour/sign	Z boson	$E_{\mathrm{T}}^{\mathrm{miss}}$	N(b-tagged jets)	Target process
VR0 aunoZa $VR0 au$ Za	3 3	0	$\begin{array}{c} \ell^+\ell^-\ell,\; \ell^+\ell^-\ell'\\ \ell^+\ell^-\ell,\; \ell^+\ell^-\ell' \end{array}$	$m_{\mathrm{SFOS}}~\&~m_{3\ell}~\mathrm{veto}$ request	35-50 $35-50$	- -	WZ^* , Z^*Z^* , Z^* +jets WZ , Z +jets
VR0 aunoZb $VR0 au$ Zb $VR0 au$ b	3 3 3	0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$m_{ m SFOS}~\&~m_{3\ell}~{ m veto}$ request binned	> 50 > 50 binned	1 1 1	$egin{array}{c} tar{t} \ WZ \ WZ,\ tar{t} \end{array}$
$VR1\tau a$ $VR1\tau b$	2 2	1 1	$\tau^{\pm}\ell^{\mp}\ell^{\mp}, \ \tau^{\pm}\ell^{\mp}\ell'^{\mp}$ $\tau^{\pm}\ell^{\mp}\ell^{\mp}, \ \tau^{\pm}\ell^{\mp}\ell'^{\mp}$	— — —	35–50 > 50	_ 1	$WZ, Z+\text{jets}$ $t\bar{t}$
$VR2\tau a$ $VR2\tau b$	1 1	2 2	$ au au\ell$ $ au au\ell$	- -	35–50 > 50	_ 1	$W+$ jets, $Z+$ jets $t\bar{t}$

VR0:= 0 taus

VR1:= 1 tau

VR2:= 2 taus

"a" regions:
 low missing ET"b" regions:
 High missing ETRequest 1 b-jet

Thorough
validation of the
modelling of our
main
backgrounds
WZ, ttbar,
W/Z+jets using
these VR

3L analysis:: Background Modelling

Irreducible background estimated with MC. Reducible background estimated with data-driven method.

Sample	m VR0 au noZa	$VR0\tau Za$	VR0 auno Z b	${ m VR}0 au{ m Zb}$	$\mathrm{VR}1 au\mathrm{a}$	$VR1\tau b$	VR2 au a	$\mathrm{VR}2 au\mathrm{b}$
WZ	91 ± 12	471 ± 47	$10.5^{+1.8}_{-2.0}$	58 ± 7	14.6 ± 1.9	1.99 ± 0.35	$14.3^{+2.4}_{-2.5}$	1.9 ± 0.4
ZZ	19 ± 4	48 ± 7	0.62 ± 0.12	2.6 ± 0.4	$1.76^{+0.29}_{-0.28}$	0.138 ± 0.028	1.8 ± 0.4	0.12 ± 0.04
$t\bar{t}V + tZ$	3.2 ± 1.0	$10.1^{+2.3}_{-2.2}$	9.5 ± 3.1	18 ± 4	0.9 ± 0.9	2.8 ± 1.3	1.0 ± 0.7	1.7 ± 0.7
VVV	1.9 ± 1.9	0.7 ± 0.7	$0.35^{+0.36}_{-0.35}$	0.18 ± 0.18	0.4 ± 0.4	0.08 ± 0.08	0.12 ± 0.12	$0.06^{+0.07}_{-0.06}$
$_{ m Higgs}$	2.7 ± 1.3	2.7 ± 1.5	1.5 ± 1.0	0.71 ± 0.29	0.57 ± 0.34	0.5 ± 0.5	0.6 ± 0.4	0.5 ± 0.5
Reducible	73^{+20}_{-17}	261 ± 70	47^{+15}_{-13}	19 ± 5	71 ± 9	22.7 ± 2.8	630^{+9}_{-12}	162^{+6}_{-8}
Total SM	191^{+24}_{-22}	794 ± 86	69 ⁺¹⁵ ₋₁₄	98 ± 10	89 ⁺¹⁰ ₋₉	28.2 ± 3.2	648 ⁺¹⁰ ₋₁₃	166 ⁺⁶ ₋₈
Data	228	792	79	110	82	26	656	158
\								

Excellent agreement seen between data and expectation

18

3L analysis:: Signal regions

0 tau

SR	$\mathrm{SR}0 au\mathrm{a}$	$\mathrm{SR}0 au\mathrm{b}$	$\mathrm{SR}1 au$	$\mathrm{SR}2 au\mathrm{a}$	$\mathrm{SR}2 au\mathrm{b}$
Flavour/sign b -tagged jet $E_{\mathrm{T}}^{\mathrm{miss}}$	$\ell^+\ell^-\ell$, $\ell^+\ell^-\ell'$ veto binned	$\ell^{\pm}\ell^{\pm}\ell'^{\mp}$ veto > 50	$\tau^{\pm}\ell^{\mp}\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell'^{\mp}$ veto > 50	$ \tau \tau \ell $ veto $ > 50 $	$\tau^{+}\tau^{-}\ell$ veto > 60
Other	$m_{ m SFOS}$ binned $m_{ m T}$ binned	$p_{\mathrm{T}}^{3^{\mathrm{rd}}\ell} > 20$ $\Delta \phi_{\ell\ell'}^{\min} \le 1.0$	$p_{\mathrm{T}}^{2^{\mathrm{nd}}\ell} > 30$ $\sum_{T} p_{\mathrm{T}}^{\ell} > 70$ $m_{\ell\tau} < 120$ $m_{ee} Z \text{ veto}$	$m_{\rm T2}^{\rm max} > 100$	$\sum_{T} p_{\rm T}^{\tau} > 110$ $70 < m_{\tau\tau} < 120$
Target model	$\tilde{\ell},WZ$ -mediated	Wh-mediated	Wh-mediated	$\tilde{ au}_L$ -mediated	Wh-mediated

1 tau

New Signal Regions

**20 bins: 5 mSFOS 2 mT 2 missingET 2 tau

TOTAL OF 20 BINS

SR	$SR0\tau a$
Flavour/sign b -tagged jet $E_{\mathrm{T}}^{\mathrm{miss}}$	$\ell^+\ell^-\ell$, $\ell^+\ell^-\ell'$ veto binned
Other	$m_{\rm SFOS}$ binned $m_{\rm T}$ binned

Target model	$\tilde{\ell},WZ$ -mediated

Binned Signal Region

	5 mSFOS bins	2 mT bins	2 MET bins	
$\mathrm{SR}0\tau\mathrm{a}$ bin	$m_{ m SFOS}$	$m_{ m T}$	$E_{\mathrm{T}}^{\mathrm{miss}}$	$3\ell~Z$ veto
1	12-40	0–80	50-90	no
2	12 – 40	0-80	> 90	no
3	12 – 40	> 80	50 - 75	no
4	12 – 40	> 80	> 75	no
5	40-60	0-80	50-75	yes
6	40 – 60	0-80	> 75	no
7	40 – 60	> 80	50 - 135	no
8	40–60	> 80	> 135	no
9	60-81.2	0-80	50-75	yes
10	60 - 81.2	> 80	50 - 75	no
11	60 - 81.2	0 - 110	> 75	no
12	60 – 81.2	> 110	> 75	no
13	81.2-101.2	0-110	50-90	yes
14	81.2 - 101.2	$0\!-\!110$	> 90	no
15	81.2 – 101.2	> 110	50 - 135	no
16	81.2–101.2	> 110	> 135	no
17	> 101.2	0-180	50-210	no
18	> 101.2	> 180	50 - 210	no
19	> 101.2	$0\!-\!120$	> 210	no
20	> 101.2	> 120	> 210	no

Dominant systematic uncertainties in all signal regions generally <u>statistical and from theory</u>

Theoretical uncertainties $SR0\tau a$ $SR0\tau b$ $SR1\tau$ $SR2\tau a$ $SR2\tau b$ $\underline{37\%}$ 9%4-25%3.1%3.0%Cross-section 6%< 1%3.2 - 35%Generator 0.8 - 26%8% 3.1%Statistics on irreducible background 5%5%0.4 - 29%13%12%Statistics on reducible background 14%8% 0.3 – 10%< 1% Electron misidentification probability 1.3%< 1% Muon misidentification probability 0.1-24%2.2% τ misidentification probability 8%4%5%

Irreducible background estimated with MC. Reducible background estimated with data-driven method.

Overall, good agreement with predicted SM background

Sample	$SR0\tau a$ -bin 01	$\mathrm{SR}0 au$ a-bin 02	$SR0\tau$ a-bin 03	$SR0\tau$ a-bin 04	$\mathrm{SR}0 au$ a-bin 05	$SR0\tau a$ -bin06
WZ	$13.2^{+3.4}_{-3.2}$	3.0 ± 1.4	7.8 ± 1.6	$4.5^{+1.1}_{-1.0}$	6.3 ± 1.6	3.7 ± 1.6
ZZ	$1.4^{+0.6}_{-0.5}$	0.12 ± 0.06	0.40 ± 0.14	0.20 ± 0.18	1.5 ± 0.5	$0.25^{+0.14}_{-0.11}$
$t\bar{t}V + tZ$	0.14 ± 0.05	0.07 ± 0.04	$0.04^{+0.05}_{-0.04}$	0.14 ± 0.13	0.11 ± 0.08	$0.047^{+0.022}_{-0.021}$
VVV	0.33 ± 0.33	0.10 ± 0.10	0.19 ± 0.19	0.6 ± 0.6	$0.26^{+0.27}_{-0.26}$	0.24 ± 0.24
Higgs	0.66 ± 0.26	0.15 ± 0.08	0.64 ± 0.22	$0.46^{+0.18}_{-0.17}$	$0.36^{+0.14}_{-0.15}$	$0.33^{+0.13}_{-0.12}$
Reducible	6.7 ± 2.4	0.8 ± 0.4	$1.6^{+0.7}_{-0.6}$	2.7 ± 1.0	$4.3^{+1.6}_{-1.4}$	2.0 ± 0.8
Total SM	23 ± 4	4.2 ± 1.5	10.6 ± 1.8	$8.5^{+1.7}_{-1.6}$	$12.9_{-2.3}^{+2.4}$	$6.6^{+1.9}_{-1.8}$
Data	36	5	9	9	11	13

Uncertainties are statistical and systematic.

22

1-2 sigma upward fluctuations

Irreducible background estimated with MC. Reducible background estimated with data-driven method.

Overall, good agreement with predicted SM background

Sample	$SR0\tau a$ -bin 07	$SR0\tau$ a-bin 08	$SR0\tau$ a-bin09	$SR0\tau a$ -bin10	$SR0\tau$ a-bin11	$SR0\tau$ a-bin12
WZ	7.6 ± 1.3	$0.30^{+0.25}_{-0.24}$	$16.2^{+3.2}_{-3.1}$	$13.1_{-2.6}^{+2.5}$	19 ± 4	3.7 ± 1.2
ZZ	$0.55^{+0.16}_{-0.14}$	$0.012^{+0.008}_{-0.007}$	$1.43^{+0.32}_{-0.28}$	$0.60^{+0.12}_{-0.13}$	0.7 ± 1.2	0.14 ± 0.09
$t\bar{t}V+tZ$	$0.04_{-0.04}^{+0.15}$	$0.12^{+0.13}_{-0.12}$	$0.16^{+0.09}_{-0.12}$	0.12 ± 0.10	$0.41^{+0.24}_{-0.22}$	0.12 ± 0.11
VVV	0.9 ± 0.9	$0.13^{+0.14}_{-0.13}$	$0.23^{+0.24}_{-0.23}$	0.4 ± 0.4	0.6 ± 0.6	0.6 ± 0.6
Higgs	$0.98^{+0.29}_{-0.30}$	0.13 ± 0.06	0.32 ± 0.11	$0.22^{+0.10}_{-0.11}$	0.28 ± 0.12	0.12 ± 0.06
Reducible	$4.0_{-1.4}^{+1.5}$	$0.40^{+0.27}_{-0.26}$	$4.1^{+1.3}_{-1.2}$	$1.9_{-0.8}^{+0.9}$	$5.7^{+2.1}_{-1.9}$	$0.9^{+0.5}_{-0.4}$
Total SM	14.1 ± 2.2	1.1 ± 0.4	$22.4_{-3.4}^{+3.6}$	16.4 ± 2.8	27 ± 5	$5.5^{+1.5}_{-1.4}$
Data	15	1	28	24	29	8

Uncertainties are statistical and systematic.

Irreducible background estimated with MC. Reducible background estimated with data-driven method.

Overall, good agreement with predicted SM background

Sample	$SR0\tau a$ -bin13	$SR0\tau a$ -bin14	$SR0\tau a$ -bin15	$SR0\tau$ a-bin16	$SR0\tau$ a-bin17	$SR0\tau a$ -bin18
WZ	613 ± 65	207^{+33}_{-32}	58^{+12}_{-13}	$3.9_{-1.4}^{+1.6}$	50^{+7}_{-6}	2.3 ± 1.3
ZZ	29 ± 4	5.5 ± 1.5	$3.5^{+1.1}_{-1.0}$	$0.12^{+0.08}_{-0.07}$	$2.4_{-0.6}^{+0.7}$	0.08 ± 0.04
$t\bar{t}V+tZ$	$2.9_{-0.6}^{+0.7}$	$2.0_{-0.6}^{+0.7}$	$0.67^{+0.29}_{-0.28}$	$0.08^{+0.10}_{-0.08}$	0.8 ± 0.5	$0.15^{+0.16}_{-0.15}$
VVV	1.3 ± 1.3	0.8 ± 0.8	1.0 ± 1.0	0.33 ± 0.33	3.2 ± 3.2	0.5 ± 0.5
Higgs	2.2 ± 0.7	0.98 ± 0.20	0.31 ± 0.11	0.033 ± 0.018	0.95 ± 0.29	0.05 ± 0.04
Reducible	68^{+21}_{-19}	$2.2^{+1.9}_{-2.0}$	1.2 ± 0.6	$0.14^{+0.25}_{-0.14}$	$11.3_{-3.2}^{+3.5}$	0.27 ± 0.20
Total SM	715 ± 70	219 ± 33	65 ± 13	$4.6^{+1.7}_{-1.5}$	69 ⁺⁹ ₋₈	3.4 ± 1.4
Data	714	214	63	3	60	1

Uncertainties are statistical and systematic.

Irreducible background estimated with MC. Reducible background estimated with data-driven method.

Overall, good agreement with predicted SM background

Sample	$SR0\tau$ a-bin19	$SR0\tau a$ -bin20	$\mathrm{SR}0 au\mathrm{b}$	$\mathrm{SR}1 au$	$\mathrm{SR}2 au\mathrm{a}$	$\mathrm{SR}2 au\mathrm{b}$
WZ	0.9 ± 0.4	0.12 ± 0.11	0.68 ± 0.20	4.6 ± 0.6	$1.51^{+0.35}_{-0.33}$	$2.09^{+0.30}_{-0.31}$
ZZ	0.021 ± 0.019	0.009 ± 0.009	0.028 ± 0.009	0.36 ± 0.08	$0.049^{+0.016}_{-0.014}$	0.135 ± 0.025
$t\bar{t}V + tZ$	$0.0023^{+0.0032}_{-0.0019}$	$0.012^{+0.016}_{-0.012}$	$0.17^{+0.32}_{-0.17}$	$0.16^{+0.18}_{-0.16}$	$0.21^{+0.27}_{-0.21}$	$0.023^{+0.015}_{-0.018}$
VVV	0.08 ± 0.08	$0.07^{+0.08}_{-0.07}$	1.0 ± 1.0	0.5 ± 0.5	0.09 ± 0.09	0.031 ± 0.033
Higgs	0.007 ± 0.006	0.0009 ± 0.0004	0.49 ± 0.17	0.28 ± 0.12	0.021 ± 0.010	0.08 ± 0.04
Reducible	$0.17^{+0.16}_{-0.15}$	$0.08^{+0.11}_{-0.08}$	1.5 ± 0.4	4.3 ± 0.8	5.1 ± 0.7	4.9 ± 0.7
Total SM	1.2 ± 0.4	$0.29^{+0.18}_{-0.17}$	3.8 ± 1.2	10.3 ± 1.2	6.9 ± 0.8	$7.2^{+0.7}_{-0.8}$
Data	0	0	3	13	6	5

Uncertainties are statistical and systematic.

Statistical combination of SR0a, SR0b, SR1SS, SR2a

Improved limits

Via Sleptons

Statistical combination of 3L (SR0a, SR0b, SR1SS, SR2a) + 2L

Via WZ

Improved limits 2L + 3L combination

NEW Limits

Via staus

Statistical combination of SR0a, SR0b, SR1SS, SR2a

Via Wh

Statistical combination of SR0a, SR0b, SR1SS, SR2b

SUSY:: phenomenological MSSM

Assumptions:

- $-h^0$ higgs mass tuned to 125 GeV
- R-slepton masses set to $m_{ ilde{\ell_R}} = (m_{ ilde{\chi}_1^0} + m_{ ilde{\chi}_2^0})/2$

Gaugino mixing

SU(1) gaugino mass: M₁

SU(2) gaugino mass: M₂

Higgsino mass: μ

pMSSM includes many sparticles with different masses and many decay modes

The analysis presented here explores **five** pMSSM models

Decays via Sleptons(R)

- **Low tan β (6)**
- M₁=100/140/250 GeV

Decays via W/Z/h

- **Low tan β (10)**
- M₁=50 GeV

Decays via Staus(R)

- High tan β (50)
- M₁=75 GeV 29

0 0 0 **0 0 0 0**

