Supersymmetry searches with 3 leptons in the final state with the ATLAS detector at the LHC. **IoP HEP Meeting** 08-April-2014 #### Outline - SUSY - Motivation - Models - ATLAS Data - 3L SUSY Searches - Analysis Overview - Latest Results - (http://arxiv.org/abs/1402.7029) #### SUSY Proposes a symmetry between fermions and bosons New fields differing in spin by ½ with respect to their SM partners Solves hierarchy problem Provides dark matter candidate* Unification of gauge coupling constants #### The Standard Model Supersymmetry Charginos ($\tilde{\chi}_{i}^{\pm}$) and neutralinos ($\tilde{\chi}_{j}^{0}$) are mass eigenstates of the super-partners of SM gauge fields. R-Parity Conserving models => *LSP Mass generation In nature, we expect low fine tuning \longrightarrow masses of higgsinos, stops and gluinos must be light #### **SUSY::** Motivation #### **Cross-section of production of SUSY particles** From all SUSY particles that can originate from the p-p collisions, electroweakino production can be a promising discovery mode at the LHC if we assume natural SUSY. $$\tilde{\chi}_1^{\pm} \, \tilde{\chi}_2^0$$ In particular, pairs decay into final states with three leptons and missing energy This makes for a clean SUSY signature. # **SUSY::** Simplified Models - → Simulate one process only. - Minimal particle content - → Assumptions on the BR. - → The relevant particle masses are the only free parameters We explore four simplified models where the $\tilde{\chi}_1$ and $\tilde{\chi}_2^0$ are the only directly produced SUSY particles, these are classified according to the intermediate particles in the decay chain: 3L analysis:: Event Selection • Select event with exactly 3 leptons (e, μ , $\underline{\tau}$). - Exploring three <u>different tau multiplicities in the final state</u> - 0Tau+3(e,mu) - 1Tau+2(e,mu) - 2Tau+1(e,mu) - Veto events containing b-tagged jets. • Require high missing transverse energy . # **3L analysis:: Background Estimation** #### 3L analysis:: **Validation Regions**** We estimate the Standard Model background in dedicated regions: Thorough validation of the modelling of our main backgrounds WZ, ttbar, W/Z+jets using these VR # 3L analysis:: Signal regions** # Five signal regions targeting different scenarios mSFOS:= mass of a pair of light leptons with opposite charge and same flavour closest to the Z mT:= transverse mass of the third lepton (not part of SFOS) and missingET coming from the W. US University of Sussex **more details in the backup 3L analysis:: Results: 0taus+3(e,mu) # SR0Ta ### Overall very good agreement between data and expectation SR0τa bin Events Data/SM [http://arxiv.org/abs/1402.7029] 3L analysis:: Results: 2taus+1e,mu (top) 1tau+2e,mu (bottom) # We interpret these results in 5 pMSSM models* and 4 simplified models* By statistically combining all orthogonal signal regions (choosing between SR2a and SR2b). 3L analysis:: Latest Results # **New limits** ## Via Wh # **Improved limits** Via WZ Statistical combination of SR0a, SR0b, SR1SS, SR2a Statistical combination of SR0a, SR0b, SR1SS, SR2b First ATLAS SUSY paper including SM higgs decays # A search for direct production of gauginos in 3 lepton final state with 20.3 fb-1 of all the 8 TeV data has been presented. New and improved sensitivity for many different SUSY scenarios - * Inclusion of hadronic taus in the final state - * SR re-optimisation in 3(e,mu)+0tau channels - Binned approach - SFOS veto. - * Interpretation in new models. #### No significant deviation from SM observed * Exclusion limits were set on 9 models: 5 pMSSM and 4 simplified models World-leading limits set on mass of charginos and neutralinos University of Sussex # Backup # **3L analysis:: Validation Regions** # We estimate the Standard Model background in dedicated regions: | | $N(\ell)$ | $N(\tau)$ | Flavour/sign | Z boson | $E_{\mathrm{T}}^{\mathrm{miss}}$ | N(b-tagged jets) | Target process | |-----------------------------------|-------------|-------------|--|--|----------------------------------|------------------|--| | VR0 aunoZa $VR0 au$ Za | 3
3 | 0 | $\begin{array}{c} \ell^+\ell^-\ell,\; \ell^+\ell^-\ell'\\ \ell^+\ell^-\ell,\; \ell^+\ell^-\ell' \end{array}$ | $m_{\mathrm{SFOS}}~\&~m_{3\ell}~\mathrm{veto}$ request | 35-50 $35-50$ | -
- | WZ^* , Z^*Z^* , Z^* +jets WZ , Z +jets | | VR0 aunoZb $VR0 au$ Zb $VR0 au$ b | 3
3
3 | 0
0
0 | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $m_{ m SFOS}~\&~m_{3\ell}~{ m veto}$ request binned | > 50
> 50
binned | 1
1
1 | $egin{array}{c} tar{t} \ WZ \ WZ,\ tar{t} \end{array}$ | | $VR1\tau a$ $VR1\tau b$ | 2
2 | 1
1 | $\tau^{\pm}\ell^{\mp}\ell^{\mp}, \ \tau^{\pm}\ell^{\mp}\ell'^{\mp}$
$\tau^{\pm}\ell^{\mp}\ell^{\mp}, \ \tau^{\pm}\ell^{\mp}\ell'^{\mp}$ | —
—
— | 35–50
> 50 | _
1 | $WZ, Z+\text{jets}$ $t\bar{t}$ | | $VR2\tau a$ $VR2\tau b$ | 1
1 | 2
2 | $ au au\ell$ $ au au\ell$ | -
- | 35–50
> 50 | _
1 | $W+$ jets, $Z+$ jets $t\bar{t}$ | VR0:= 0 taus VR1:= 1 tau VR2:= 2 taus "a" regions: low missing ET"b" regions: High missing ETRequest 1 b-jet Thorough validation of the modelling of our main backgrounds WZ, ttbar, W/Z+jets using these VR # 3L analysis:: Background Modelling Irreducible background estimated with MC. Reducible background estimated with data-driven method. | Sample | m VR0 au noZa | $VR0\tau Za$ | VR0 auno Z b | ${ m VR}0 au{ m Zb}$ | $\mathrm{VR}1 au\mathrm{a}$ | $VR1\tau b$ | VR2 au a | $\mathrm{VR}2 au\mathrm{b}$ | |------------------|-------------------|----------------------|----------------------------------|----------------------|---------------------------------|-------------------|-----------------------------------|---------------------------------| | WZ | 91 ± 12 | 471 ± 47 | $10.5^{+1.8}_{-2.0}$ | 58 ± 7 | 14.6 ± 1.9 | 1.99 ± 0.35 | $14.3^{+2.4}_{-2.5}$ | 1.9 ± 0.4 | | ZZ | 19 ± 4 | 48 ± 7 | 0.62 ± 0.12 | 2.6 ± 0.4 | $1.76^{+0.29}_{-0.28}$ | 0.138 ± 0.028 | 1.8 ± 0.4 | 0.12 ± 0.04 | | $t\bar{t}V + tZ$ | 3.2 ± 1.0 | $10.1^{+2.3}_{-2.2}$ | 9.5 ± 3.1 | 18 ± 4 | 0.9 ± 0.9 | 2.8 ± 1.3 | 1.0 ± 0.7 | 1.7 ± 0.7 | | VVV | 1.9 ± 1.9 | 0.7 ± 0.7 | $0.35^{+0.36}_{-0.35}$ | 0.18 ± 0.18 | 0.4 ± 0.4 | 0.08 ± 0.08 | 0.12 ± 0.12 | $0.06^{+0.07}_{-0.06}$ | | $_{ m Higgs}$ | 2.7 ± 1.3 | 2.7 ± 1.5 | 1.5 ± 1.0 | 0.71 ± 0.29 | 0.57 ± 0.34 | 0.5 ± 0.5 | 0.6 ± 0.4 | 0.5 ± 0.5 | | Reducible | 73^{+20}_{-17} | 261 ± 70 | 47^{+15}_{-13} | 19 ± 5 | 71 ± 9 | 22.7 ± 2.8 | 630^{+9}_{-12} | 162^{+6}_{-8} | | Total SM | 191^{+24}_{-22} | 794 ± 86 | 69 ⁺¹⁵ ₋₁₄ | 98 ± 10 | 89 ⁺¹⁰ ₋₉ | 28.2 ± 3.2 | 648 ⁺¹⁰ ₋₁₃ | 166 ⁺⁶ ₋₈ | | Data | 228 | 792 | 79 | 110 | 82 | 26 | 656 | 158 | | \ | | | | | | | | | Excellent agreement seen between data and expectation 18 # 3L analysis:: Signal regions 0 tau | SR | $\mathrm{SR}0 au\mathrm{a}$ | $\mathrm{SR}0 au\mathrm{b}$ | $\mathrm{SR}1 au$ | $\mathrm{SR}2 au\mathrm{a}$ | $\mathrm{SR}2 au\mathrm{b}$ | |---|--|--|--|----------------------------------|---| | Flavour/sign b -tagged jet $E_{\mathrm{T}}^{\mathrm{miss}}$ | $\ell^+\ell^-\ell$, $\ell^+\ell^-\ell'$ veto binned | $\ell^{\pm}\ell^{\pm}\ell'^{\mp}$ veto > 50 | $\tau^{\pm}\ell^{\mp}\ell^{\mp}, \tau^{\pm}\ell^{\mp}\ell'^{\mp}$ veto > 50 | $ \tau \tau \ell $ veto $ > 50 $ | $\tau^{+}\tau^{-}\ell$ veto > 60 | | Other | $m_{ m SFOS}$ binned $m_{ m T}$ binned | $p_{\mathrm{T}}^{3^{\mathrm{rd}}\ell} > 20$ $\Delta \phi_{\ell\ell'}^{\min} \le 1.0$ | $p_{\mathrm{T}}^{2^{\mathrm{nd}}\ell} > 30$ $\sum_{T} p_{\mathrm{T}}^{\ell} > 70$ $m_{\ell\tau} < 120$ $m_{ee} Z \text{ veto}$ | $m_{\rm T2}^{\rm max} > 100$ | $\sum_{T} p_{\rm T}^{\tau} > 110$ $70 < m_{\tau\tau} < 120$ | | Target model | $\tilde{\ell},WZ$ -mediated | Wh-mediated | Wh-mediated | $\tilde{ au}_L$ -mediated | Wh-mediated | 1 tau ## **New Signal Regions** **20 bins: 5 mSFOS 2 mT 2 missingET 2 tau #### **TOTAL OF 20 BINS** | SR | $SR0\tau a$ | |---|--| | Flavour/sign b -tagged jet $E_{\mathrm{T}}^{\mathrm{miss}}$ | $\ell^+\ell^-\ell$, $\ell^+\ell^-\ell'$ veto binned | | Other | $m_{\rm SFOS}$ binned $m_{\rm T}$ binned | | Target model | $\tilde{\ell},WZ$ -mediated | |--------------|-----------------------------| | | | Binned Signal Region | | 5 mSFOS
bins | 2 mT
bins | 2 MET
bins | | |----------------------------------|-----------------|--------------|----------------------------------|----------------| | $\mathrm{SR}0\tau\mathrm{a}$ bin | $m_{ m SFOS}$ | $m_{ m T}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $3\ell~Z$ veto | | 1 | 12-40 | 0–80 | 50-90 | no | | 2 | 12 – 40 | 0-80 | > 90 | no | | 3 | 12 – 40 | > 80 | 50 - 75 | no | | 4 | 12 – 40 | > 80 | > 75 | no | | 5 | 40-60 | 0-80 | 50-75 | yes | | 6 | 40 – 60 | 0-80 | > 75 | no | | 7 | 40 – 60 | > 80 | 50 - 135 | no | | 8 | 40–60 | > 80 | > 135 | no | | 9 | 60-81.2 | 0-80 | 50-75 | yes | | 10 | 60 - 81.2 | > 80 | 50 - 75 | no | | 11 | 60 - 81.2 | 0 - 110 | > 75 | no | | 12 | 60 – 81.2 | > 110 | > 75 | no | | 13 | 81.2-101.2 | 0-110 | 50-90 | yes | | 14 | 81.2 - 101.2 | $0\!-\!110$ | > 90 | no | | 15 | 81.2 – 101.2 | > 110 | 50 - 135 | no | | 16 | 81.2–101.2 | > 110 | > 135 | no | | 17 | > 101.2 | 0-180 | 50-210 | no | | 18 | > 101.2 | > 180 | 50 - 210 | no | | 19 | > 101.2 | $0\!-\!120$ | > 210 | no | | 20 | > 101.2 | > 120 | > 210 | no | # Dominant systematic uncertainties in all signal regions generally <u>statistical and from theory</u> Theoretical uncertainties $SR0\tau a$ $SR0\tau b$ $SR1\tau$ $SR2\tau a$ $SR2\tau b$ $\underline{37\%}$ 9%4-25%3.1%3.0%Cross-section 6%< 1%3.2 - 35%Generator 0.8 - 26%8% 3.1%Statistics on irreducible background 5%5%0.4 - 29%13%12%Statistics on reducible background 14%8% 0.3 – 10%< 1% Electron misidentification probability 1.3%< 1% Muon misidentification probability 0.1-24%2.2% τ misidentification probability 8%4%5% Irreducible background estimated with MC. Reducible background estimated with data-driven method. Overall, good agreement with predicted SM background | Sample | $SR0\tau a$ -bin 01 | $\mathrm{SR}0 au$ a-bin 02 | $SR0\tau$ a-bin 03 | $SR0\tau$ a-bin 04 | $\mathrm{SR}0 au$ a-bin 05 | $SR0\tau a$ -bin06 | |------------------|-----------------------|------------------------------|------------------------|------------------------|------------------------------|---------------------------| | WZ | $13.2^{+3.4}_{-3.2}$ | 3.0 ± 1.4 | 7.8 ± 1.6 | $4.5^{+1.1}_{-1.0}$ | 6.3 ± 1.6 | 3.7 ± 1.6 | | ZZ | $1.4^{+0.6}_{-0.5}$ | 0.12 ± 0.06 | 0.40 ± 0.14 | 0.20 ± 0.18 | 1.5 ± 0.5 | $0.25^{+0.14}_{-0.11}$ | | $t\bar{t}V + tZ$ | 0.14 ± 0.05 | 0.07 ± 0.04 | $0.04^{+0.05}_{-0.04}$ | 0.14 ± 0.13 | 0.11 ± 0.08 | $0.047^{+0.022}_{-0.021}$ | | VVV | 0.33 ± 0.33 | 0.10 ± 0.10 | 0.19 ± 0.19 | 0.6 ± 0.6 | $0.26^{+0.27}_{-0.26}$ | 0.24 ± 0.24 | | Higgs | 0.66 ± 0.26 | 0.15 ± 0.08 | 0.64 ± 0.22 | $0.46^{+0.18}_{-0.17}$ | $0.36^{+0.14}_{-0.15}$ | $0.33^{+0.13}_{-0.12}$ | | Reducible | 6.7 ± 2.4 | 0.8 ± 0.4 | $1.6^{+0.7}_{-0.6}$ | 2.7 ± 1.0 | $4.3^{+1.6}_{-1.4}$ | 2.0 ± 0.8 | | Total SM | 23 ± 4 | 4.2 ± 1.5 | 10.6 ± 1.8 | $8.5^{+1.7}_{-1.6}$ | $12.9_{-2.3}^{+2.4}$ | $6.6^{+1.9}_{-1.8}$ | | Data | 36 | 5 | 9 | 9 | 11 | 13 | Uncertainties are statistical and systematic. 22 1-2 sigma upward fluctuations Irreducible background estimated with MC. Reducible background estimated with data-driven method. # Overall, good agreement with predicted SM background | Sample | $SR0\tau a$ -bin 07 | $SR0\tau$ a-bin 08 | $SR0\tau$ a-bin09 | $SR0\tau a$ -bin10 | $SR0\tau$ a-bin11 | $SR0\tau$ a-bin12 | |----------------|------------------------|---------------------------|------------------------|------------------------|------------------------|---------------------| | WZ | 7.6 ± 1.3 | $0.30^{+0.25}_{-0.24}$ | $16.2^{+3.2}_{-3.1}$ | $13.1_{-2.6}^{+2.5}$ | 19 ± 4 | 3.7 ± 1.2 | | ZZ | $0.55^{+0.16}_{-0.14}$ | $0.012^{+0.008}_{-0.007}$ | $1.43^{+0.32}_{-0.28}$ | $0.60^{+0.12}_{-0.13}$ | 0.7 ± 1.2 | 0.14 ± 0.09 | | $t\bar{t}V+tZ$ | $0.04_{-0.04}^{+0.15}$ | $0.12^{+0.13}_{-0.12}$ | $0.16^{+0.09}_{-0.12}$ | 0.12 ± 0.10 | $0.41^{+0.24}_{-0.22}$ | 0.12 ± 0.11 | | VVV | 0.9 ± 0.9 | $0.13^{+0.14}_{-0.13}$ | $0.23^{+0.24}_{-0.23}$ | 0.4 ± 0.4 | 0.6 ± 0.6 | 0.6 ± 0.6 | | Higgs | $0.98^{+0.29}_{-0.30}$ | 0.13 ± 0.06 | 0.32 ± 0.11 | $0.22^{+0.10}_{-0.11}$ | 0.28 ± 0.12 | 0.12 ± 0.06 | | Reducible | $4.0_{-1.4}^{+1.5}$ | $0.40^{+0.27}_{-0.26}$ | $4.1^{+1.3}_{-1.2}$ | $1.9_{-0.8}^{+0.9}$ | $5.7^{+2.1}_{-1.9}$ | $0.9^{+0.5}_{-0.4}$ | | Total SM | 14.1 ± 2.2 | 1.1 ± 0.4 | $22.4_{-3.4}^{+3.6}$ | 16.4 ± 2.8 | 27 ± 5 | $5.5^{+1.5}_{-1.4}$ | | Data | 15 | 1 | 28 | 24 | 29 | 8 | Uncertainties are statistical and systematic. Irreducible background estimated with MC. Reducible background estimated with data-driven method. # Overall, good agreement with predicted SM background | Sample | $SR0\tau a$ -bin13 | $SR0\tau a$ -bin14 | $SR0\tau a$ -bin15 | $SR0\tau$ a-bin16 | $SR0\tau$ a-bin17 | $SR0\tau a$ -bin18 | |----------------|---------------------|---------------------|------------------------|------------------------|--------------------------------|------------------------| | WZ | 613 ± 65 | 207^{+33}_{-32} | 58^{+12}_{-13} | $3.9_{-1.4}^{+1.6}$ | 50^{+7}_{-6} | 2.3 ± 1.3 | | ZZ | 29 ± 4 | 5.5 ± 1.5 | $3.5^{+1.1}_{-1.0}$ | $0.12^{+0.08}_{-0.07}$ | $2.4_{-0.6}^{+0.7}$ | 0.08 ± 0.04 | | $t\bar{t}V+tZ$ | $2.9_{-0.6}^{+0.7}$ | $2.0_{-0.6}^{+0.7}$ | $0.67^{+0.29}_{-0.28}$ | $0.08^{+0.10}_{-0.08}$ | 0.8 ± 0.5 | $0.15^{+0.16}_{-0.15}$ | | VVV | 1.3 ± 1.3 | 0.8 ± 0.8 | 1.0 ± 1.0 | 0.33 ± 0.33 | 3.2 ± 3.2 | 0.5 ± 0.5 | | Higgs | 2.2 ± 0.7 | 0.98 ± 0.20 | 0.31 ± 0.11 | 0.033 ± 0.018 | 0.95 ± 0.29 | 0.05 ± 0.04 | | Reducible | 68^{+21}_{-19} | $2.2^{+1.9}_{-2.0}$ | 1.2 ± 0.6 | $0.14^{+0.25}_{-0.14}$ | $11.3_{-3.2}^{+3.5}$ | 0.27 ± 0.20 | | Total SM | 715 ± 70 | 219 ± 33 | 65 ± 13 | $4.6^{+1.7}_{-1.5}$ | 69 ⁺⁹ ₋₈ | 3.4 ± 1.4 | | Data | 714 | 214 | 63 | 3 | 60 | 1 | Uncertainties are statistical and systematic. Irreducible background estimated with MC. Reducible background estimated with data-driven method. # Overall, good agreement with predicted SM background | Sample | $SR0\tau$ a-bin19 | $SR0\tau a$ -bin20 | $\mathrm{SR}0 au\mathrm{b}$ | $\mathrm{SR}1 au$ | $\mathrm{SR}2 au\mathrm{a}$ | $\mathrm{SR}2 au\mathrm{b}$ | |------------------|------------------------------|---------------------------|-----------------------------|------------------------|-----------------------------|-----------------------------| | WZ | 0.9 ± 0.4 | 0.12 ± 0.11 | 0.68 ± 0.20 | 4.6 ± 0.6 | $1.51^{+0.35}_{-0.33}$ | $2.09^{+0.30}_{-0.31}$ | | ZZ | 0.021 ± 0.019 | 0.009 ± 0.009 | 0.028 ± 0.009 | 0.36 ± 0.08 | $0.049^{+0.016}_{-0.014}$ | 0.135 ± 0.025 | | $t\bar{t}V + tZ$ | $0.0023^{+0.0032}_{-0.0019}$ | $0.012^{+0.016}_{-0.012}$ | $0.17^{+0.32}_{-0.17}$ | $0.16^{+0.18}_{-0.16}$ | $0.21^{+0.27}_{-0.21}$ | $0.023^{+0.015}_{-0.018}$ | | VVV | 0.08 ± 0.08 | $0.07^{+0.08}_{-0.07}$ | 1.0 ± 1.0 | 0.5 ± 0.5 | 0.09 ± 0.09 | 0.031 ± 0.033 | | Higgs | 0.007 ± 0.006 | 0.0009 ± 0.0004 | 0.49 ± 0.17 | 0.28 ± 0.12 | 0.021 ± 0.010 | 0.08 ± 0.04 | | Reducible | $0.17^{+0.16}_{-0.15}$ | $0.08^{+0.11}_{-0.08}$ | 1.5 ± 0.4 | 4.3 ± 0.8 | 5.1 ± 0.7 | 4.9 ± 0.7 | | Total SM | 1.2 ± 0.4 | $0.29^{+0.18}_{-0.17}$ | 3.8 ± 1.2 | 10.3 ± 1.2 | 6.9 ± 0.8 | $7.2^{+0.7}_{-0.8}$ | | Data | 0 | 0 | 3 | 13 | 6 | 5 | Uncertainties are statistical and systematic. Statistical combination of SR0a, SR0b, SR1SS, SR2a # **Improved limits** # Via Sleptons Statistical combination of 3L (SR0a, SR0b, SR1SS, SR2a) + 2L Via WZ # Improved limits 2L + 3L combination # **NEW Limits** # Via staus Statistical combination of SR0a, SR0b, SR1SS, SR2a # Via Wh Statistical combination of SR0a, SR0b, SR1SS, SR2b ## **SUSY:: phenomenological MSSM** #### Assumptions: - $-h^0$ higgs mass tuned to 125 GeV - R-slepton masses set to $m_{ ilde{\ell_R}} = (m_{ ilde{\chi}_1^0} + m_{ ilde{\chi}_2^0})/2$ ## **Gaugino mixing** SU(1) gaugino mass: M₁ SU(2) gaugino mass: M₂ Higgsino mass: μ pMSSM includes many sparticles with different masses and many decay modes The analysis presented here explores **five** pMSSM models ### **Decays via Sleptons(R)** - **Low tan β (6)** - M₁=100/140/250 GeV ## Decays via W/Z/h - **Low tan β (10)** - M₁=50 GeV ## Decays via Staus(R) - High tan β (50) - M₁=75 GeV 29 0 0 0 **0 0 0 0**