Status of Quark Flavor Physics

💐 Flavour Physics in the LHC era 🎆

Franz Muheim University of Edinburgh

Thanks to colleagues from ATLAS, CMS, LHCb, D0, CDF, BaBar, Belle for their help in preparing this talk

IOP, RHUL, 8/04/2014

Outline

Motivation

- Matter-Antimatter asymmetry, Dark Matter
- Probing New Physics in CP violation and rare decays
- LHCb experiment

• Flavour Physics Results - Selected Highlights

- Rare decays
- CP Violation (🔑)
- Lifetimes
- Charm physics
- CKM angle gamma
- Spectroscopy
- Future plans
 - LHCb upgrade and Belle/SuperKEKB
- Conclusions

Major Open Questions

• What is the universe made of?

Flavour physics is searching for answers to these questions

like that???

- only 4% of observed universe is made of known matter
 96% is not understood
- Why is there so much matter and almost no antimatter?
 - only one in a billion particles are antimatter
 - Protons & antiprotons annihilated within 1 ms after Big Bang
- Why does the Universe look like

and not

CP Violation

- CP Violation is necessary for matter-antimatter asymmetry
- CKM mechanism
 - predicts \swarrow for 3 generations of quarks
 - Cabibbo-Kobayashi-Maskawa quark mixing matrix

$$\mathbf{V} = \begin{pmatrix} V_{ud} \ V_{us} \ V_{ub} \\ V_{cd} \ V_{cs} \ V_{cb} \\ V_{td} \ V_{ts} \ V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{\lambda^2}{2} & \lambda & A\lambda^3(\rho - i\eta) \\ -\lambda & 1 - \frac{\lambda^2}{2} & A\lambda^2 \\ A\lambda^3(1 - \rho - i\eta) & -A\lambda^2 & 1 \end{pmatrix} + O(\lambda^4)$$

- discovered in Kaons in 1964 and in B-mesons in 2001
- CKM mechanism implies $n_p/n_v \sim 10^{-18}$ 9 orders of magnitudes too low
- Additional sources of *P* are required
 - Quark sector? Flavour experiments LHCb, (Super) B-factory
 - Leptogenesis? Neutrinos

New Physics in Flavour

• Flavour explores new physics (NP) beyond the energy frontier

- Sensitive to NP appearing as virtual particles in loop processes
- Observable deviations from SM expectations in flavour physics
- CP violation (CP)

 $B_s - \overline{B}_s$ oscillations

New Physics Flavour Problem

 10^{5}

 10^{4}

 10^{-10}

 10^{2}

 10^{1}

 $\Lambda_{\ell} [TeV]$

Add new physics to SM Lagrangian

- $\mathcal{L}_{\mathrm{eff}} = \mathcal{L}_{\mathrm{SM}} + rac{c_i}{\Lambda^2}O_i$
- **Flavour transitions**
 - probe high mass scales
 - parameterised in terms of operators, couplings and mass scales
- NP flavour problem
 - If couplings $c_i \sim 1$ NP should have been seen
 - particles have large masses >> 1 TeV or

couplings are small c_i << 1 & same as in SM

New physics ruled out from $\Lambda=0$ to somewhere in the blue boxes

LHCb Experiment

• LHC is a flavour factory

- beauty quark cross section
- Very large charm cross section
- LHCb

нср

- dedicated experiment for heavy flavour physics

IOP, RHUL, 8/04/2014

LHCb Performance

Very successful 2010/11/12 run

- LHCb operated at luminosities up to
 L = 4 x 10³² cm⁻² s⁻¹
 2x design luminosity
- Average # of visible interactions/ crossing μ = 1.4 (nominal 0.4)
- Integrated $\int Ldt \sim 3 \, fb^{-1}$ on tape
- 91% data taking efficiency, 99% of channels operational
- ~ 5 kHz of physics data to tape

Decay highly suppressed in SM

- CKM and helicity suppressed
- Predicted branching ratio
- BR ($B_s \rightarrow \mu + \mu -$) = (3.5 ± 0.2) × 10⁻⁹
- BR (B⁰ \rightarrow µ+µ-) = (1.1 ± 0.2) × 10⁻¹⁰

Very sensitive to new physics

- Strongly enhanced in MSSM models
- Rate $\propto \tan^6\beta/M_H$

IOP, RHUL, 8/04/2014

• Observation of $B_s \rightarrow \mu^+\mu^-$

- 2012 LHCb: 3.5σ evidence
- 2013 CMS & LHCb
 observation > 5σ combined

LHCb Observation

- 1.0 fb⁻¹ 2011 (7 TeV) &
 2.0 fb⁻¹ 2012 (8 TeV) data
- Selection based on BDT combining vertex and geometrical information

$$BR(B_{s}^{0} \rightarrow \mu^{+}\mu^{-}) = 2.9^{+1.1}_{-1.0}(stat)^{+0.3}_{-0.1}(syst) \cdot 10^{-9}$$

$$BR(B^{0} \rightarrow \mu^{+}\mu^{-}) = 3.7^{+2.4}_{-2.1}(stat)^{+0.6}_{-0.4}(syst) \cdot 10^{-10}$$
2.00

CMS Observation

$$BR(B_s^0 \to \mu^+ \mu^-) = 3.0^{+1.1}_{-0.9} \cdot 10^{-9}$$

$$BR(B^0 \to \mu^+ \mu^-) = 3.5^{+2.1}_{-1.8} \cdot 10^{-10}$$
2.00

IOP, RHUL, 8/04/2014

Franz Muheim

- at large tanß flavour physics excludes full parameter space
- **Exclusion ranges**

CMSSM

-) [10⁻⁹] MSSM-LL **Constrained Minimal Supersymmetry** 1.5 $(-\eta + \eta_{1.0})$ MSSM-RVV SM4↑ $\mathcal{B}(\mathsf{B}^0$ CMS & LHCb 0.5MSSM-AC 0.0 0 RSc 1040

modified from D. Straub, arXiv:1205.6094

Franz Muheim

Flavour Changing Neutral Currents SUSY diagrams Suppressed in SM Sensitive to new Physics SM diagrams Gluino loop Chargino loop V_{tb} W⁻ V_{ts} V_{tb} V_{ts} H-Neutralino loop Higgs box t-W loop t-W box

- BR = (1.22+0.38-0.32) × 10⁻⁶
- Measured by BaBar and Belle
- Parameterisation
 - $q^2 = m^2 (\mu \mu)$ invariant mass
 - Forward Backward Asymmetry A_{FB}

LHCD EW Penguin Decay B⁰

K^{*0} longitudinal polarisation fraction F₁

 $q^{2}(A_{FR}=0) = 4.9 \pm 0.9 \ GeV^{2}/c^{4}$

consistent with SM

Franz Muheim

20

 $\frac{1}{2}$ [eV²/c⁴]

10

5

15

q²

<u>LHC</u> Angular Analysis in B⁰ – ₹ 1.5 BABAR Forward Backward Asymmetry Belle CDF In SM A_{FB} changes sign at $q^2(A_{FR}=0) = 4.36^{+0.33} - 0.31 \text{ GeV}^2$ 0.5 Previous results Babar, Belle, CDF hint at discrepancy with SM J/w -0.5 12 14 16 18 LHCb measurement 8 10 20 **n**² GeV²/c⁴ JHEP 1308 (2013)131 Theory Binned Events / (10 MeV/c^2 --LHCb LHCb 200 A_{FB} Preliminary 150 LHCb 900 ± 34 events 0.5 $\stackrel{5600}{m_{K\pi\mu\mu}}(\text{MeV / }c^2)$ 5400 A_{FB} zero crossing point -0.5

300 200 Forward Backward Asymmetry A_{FB} 100 and constant term F_{H} $B^0 \rightarrow K_S^0 \mu^+ \mu^-$ not sensitive to A_{FR} 5400 5200 $B^0 \rightarrow K_S^0 \mu^+ \mu^-$ Candidates / 0.1 30 (c) $1.1 < q^2 < 6.0 \text{ GeV}^2/c^4$ LHCb 20 15F 20F 10 10

0.8

 $|\cos\theta_1|$

Franz Muheim

0.6

Differential rates

0

IOP, RHUL, 8/04/2014

0.2

0.4

for $B^{\pm} \rightarrow K^{\pm} \mu^{+} \mu^{-}$

$$\frac{d\Gamma}{\Gamma \cdot d\cos\theta_l} = \frac{3}{4} (1 - F_H) (1 - \cos^2\theta_l) + \frac{1}{2} F_H + A_{FB} \cos\theta_l$$

LHCb-PAPER-2014-007, arXiv:1403.8045

HCb Angular Analysis in $B \rightarrow K \mu^{+} \mu^{-}$

<u>LHCb</u> Angular Analysis in B → Kµ⁺µ⁻

- $B^{\pm} \rightarrow K^{\pm}\mu^{+}\mu^{-}$
 - Measure A_{FB} and F_{H}
- $B^0 \rightarrow K_S^0 \mu^+ \mu^-$
 - Measure F_H

(a)

LHCb

-0.05

A_{FB} and F_H expected to be
 ~0 in SM
 B[±] → K[±]µ⁺µ⁻

— 68% ···· 90% ···· 95% ☆ best fit

0

0.05

0.1

A_{FB}

Results

- Consistent with SM in all q² bins
- No evidence for new (pseudo)scalar or tensor contributions

IOP, RHUL, 8/04/2014

-0.1

0.2

0.15

0.1

0.05

 F_{H}

Radiative Penguin Decays

• $B^+ \rightarrow K^+ \pi^- \pi^+ \gamma$

- observed at the B-factories
- LHCb: first measurement of photon polarisation in $b \rightarrow s\gamma$ transition
- measure up-down asymmetry in angle θ between γ and $\pi^-\pi^+$ plane
- A_{ud} non-zero at 5.2 σ

LHCb-PAPER-2014-001

CP Violation and Mixing

IOP, RHUL, 8/04/2014

CP Violation in Mixing

Semileptonic Asymmetry

- measures 🔎 in mixing
- very small in SM

$$a_{sl} = 1 - \left|\frac{q}{p}\right|^2 = \frac{|\Gamma_{12}|}{|M_{12}|} \sin \phi_{12}$$

$$a_{sl}^d = (-4.1 \pm 0.6) \cdot 10^{-4}$$

 $a_{sl}^s = (+1.9 \pm 0.3) \cdot 10^{-5}$

DO at Tevatron

- evidence for a_{sl} >> SM prediction
- updated measurement
- fit for $a_{sl}{}^s$, $a_{sl}{}^d$ and $\Delta\Gamma_d$
- differs from SM at 3.00

• a_{sl} at LHCb

 Time-integrated asymmetry in B_s →D_s⁻µ⁺v

 $A = \frac{\Gamma(D_s^- \mu^+) - \Gamma(D_s^+ \mu^-)}{\Gamma(D_s^- \mu^+) + \Gamma(D_s^+ \mu^-)} = \frac{a_{sl}^s}{2} + \left(a_p - \frac{a_{sl}^s}{2}\right) \frac{\int \exp(-\Gamma_s t) \cos(\Delta m_s t) \varepsilon(t) dt}{\int \exp(-\Gamma_s t) \cos(\Delta \Gamma_s / 2 \cdot t) \varepsilon(t) dt}$

- $a_{sl} = (-0.06 \pm 0.50 \pm 0.36)\%$
- does not confirm nor exclude D0 result

LHCb-PAPER-2013-033

IOP, RHUL, 8/04/2014

Franz Muheim

D0: Phys. Rev. D 89, 012002 (2014)

- LHCb CP violating weak phase ϕ_s
 - φ_s = 0.007 \pm 0.009 \pm 0.001 using \textbf{B}_s \rightarrow $J/\psi\varphi$
 - additional mode $B_s \rightarrow J/\psi f_0$ $\phi_s = 0.014 \pm 0.17 \pm 0.02$
- Combination of $B_s \rightarrow J/\psi \varphi$ and $B_s \rightarrow J/\psi f_0$

Franz Muheim

1 fb⁻¹, PRD87, 112010 (2013)

PLB 707(2012) 497

CP Violation in $B_s \rightarrow J/\psi\phi$

Franz Muheim

28

Status of charm mixing before LHCb

- Standard model expectation is very small (< 1%)
- Charm mixing has been measured by BaBar, Belle & CDF, but no 5σ observation in a single experiment

Charm Mixing and CP Violation

• Charm mixing

- Measures time-dependent ratio of D⁰ decays to Wrong Sign versus Right Sign
- Tagging of initial D⁰ flavour with sign of charge of slow pion from $D^{*+} \rightarrow D^{0}\pi^{+}_{s}$ and $D^{*-} \rightarrow D^{0}\pi^{-}_{s}$

• Effective lifetime asymmetry

- non-zero if indirect CP violation in mixing
- talk by Mark Smith

2012

- Amazing progress since 1995
 - well done B factories !
- CKM angle γ
 - Not yet well constrained

IOP, RHUL, 8/04/2014

 $\frac{LHCb}{\GammaHCp}$ CKM angle γ with B[±] \rightarrow DK[±] and D π^{\pm}

Sensitivity to γ

- from interference between b→c and b→u transitions at tree level
- D final state accessible
 to D⁰ and D⁰
- several methods: ADS, GLW, GGSZ

New LHCb measurement

 First ADS analysis to use singly-Cabibbo suppressed D decay

LHCb-PAPER-2013-068, arXiv:1402.2982

LHCb combination

- 2011/12 data
- using $B \rightarrow Dh$ (h=K, π), 1 fb⁻¹ with D \rightarrow hh, K_shh, K 3π , 3 fb⁻¹

LHCb Results

- $-\gamma = 67 \pm 12^{\circ}$
- Best single measurement
- Precision competitive with γ averages from B factories Babar: $\gamma = 69 \pm 17^{\circ}$ Belle: $\gamma = 68 \pm 15^{\circ}$
- 3x more data available (ADS/GLW)

talks by Donal Hill, Nazim Hussein

IOP, RHUL, 8/04/2014

інср

Spectroscopy

• Exotic X(3872) state

- is it tetra-quark, c anti-c
 DD* molecule, ...
- CDF previously ruled out all J^{PC} except 1⁺⁺ and 2⁻⁺

New measurements

- LHCb 313 events in decay
 B → X(3872)K⁺,
 X(3872) → J/ψπ⁺π⁻
- angular analysis establishes
 J^{PC} = 1⁺⁺
- Belle sees no evidence for $B \rightarrow X(3872)K^+$, $X(3872) \rightarrow \chi_{c1}\pi^+\pi^-$

Lнср

X(3872) radiative decays

 branching ratio sensitive to $R = \frac{BR(X(3872) \rightarrow \psi(2S)\gamma)}{BR(X(3872) \rightarrow J/\psi\gamma)}$

- interpretation: tetra-quark, c anti-c, DD* molecule and mixtures
- Babar evidence & Belle upper limit
- LHCb measurement
 - $R = 2.46 \pm 0.64 \pm 0.29 \pm 0.06$

does not support a pure DD* molecule interpretation

Lнср

Quarkonia

- χ_{c1} and χ_{c1} production cross section
- new ATLAS result
- χ_{b1} and χ_{b1} production cross section
- new CMS result
- LHCb results

J/ψ and Υ polarization

ATLAS-CONF-2013-095

IOP, RHUL, 8/04/2014

• Hot off the press!

- LHCb result submitted 4 hours ago

LHCb-PAPER-2014-014, arXiv:1404.1903

- "Observation of the resonant character of the Z(4430)⁻ state"
- Measurement based on 4-dim amplitude fit
 - highly significant Z(4430)⁻ state is required
 - spin-parity is unambiguosly 1⁺

Hick Flavour physics is much more

Results from LHCb, ATLAS, CMS, DO, CDF, Babar, Belle

- Rare decays
- CP Violation and lifetimes
- Charm mixing and CP violation
- CKM angle gamma
- Spectroscopy
- No time to present results on
 - Lepton flavour violation
 - tau decays, majorana searches in B decays
 - Electorweak physics
 - W, Z and H forward production
 - More Production and Spectroscopy, ...
 - Exotic Zb resonance
 - B_c meson, beauty baryons
 - fragmentation fractions
 - Central Eclusive production

• Lots of flavour physics papers, mainly from LHCb

talks by Sam Cunliffe, Simon Wright

talks by Sam Hall, Haofei Luo

talk by Rafael S. Coutinho

talk by Daniel Craig

talk by Adrien Pritchard

talk by Jon Harrison

talks by John Beddow, Michael Kiss, James McCarthy

talk by Scott Stevenson

Franz Muheim

41

інср

LHCb Upgrade

• LHCb and B-factories hugely successful

- Large New Physics ruled out in many flavour physics observables
- LHC run 2, LHCb will collect 7 to 8 fb⁻¹
- production cross section σ_{bb} and σ_{cc} doubles, Js: 7/8 \rightarrow 13/14 TeV
- LHCb upgrade rationale
 - Large increase in statistics required to investigate small NP deviations
 - Key element is 40 MHz Readout of all sub-detectors
 - Full Software Trigger increases trigger efficiency at least x2 in hadronic channels
- Upgraded LHCb detector
 - to be installed in Long Shutdown 2018/19
- LHCb Upgrade is General Purpose Experiment in Forward region
 - Beauty, Charm, LFV, Electroweak, QCD, Exotica
 - Probe/measure New Physics at the percentage level

talk by Thomas Bird

Hicp LHCb Upgrade Physics Reach

Type	Observable	Current	LHCb	Upgrade	Theory
		precision	2018	$(50{\rm fb}^{-1})$	uncertainty
B_s^0 mixing	$2\beta_s \ (B^0_s \to J/\psi \ \phi)$	0.10 [9]	0.025	0.008	~ 0.003
	$2\beta_s \ (B^0_s \to J/\psi \ f_0(980))$	$0.17 \ [10]$	0.045	0.014	~ 0.01
	$A_{ m fs}(B^0_s)$	$6.4 \times 10^{-3} \ [18]$	0.6×10^{-3}	0.2×10^{-3}	0.03×10^{-3}
Gluonic	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\phi)$	_	0.17	0.03	0.02
penguin	$2\beta_s^{\text{eff}}(B_s^0 \to K^{*0}\bar{K}^{*0})$	_	0.13	0.02	< 0.02
	$2\beta^{\text{eff}}(B^0 \to \phi K^0_S)$	0.17 [18]	0.30	0.05	0.02
Right-handed	$2\beta_s^{\text{eff}}(B_s^0 \to \phi\gamma)$	_	0.09	0.02	< 0.01
currents	$ au^{ m eff}(B^0_s o \phi \gamma) / au_{B^0_s}$	_	5~%	1%	0.2%
Electroweak	$S_3(B^0 \to K^{*0} \mu^+ \mu^-; 1 < q^2 < 6 \text{GeV}^2/c^4)$	0.08 [14]	0.025	0.008	0.02
penguin	$s_0 A_{\rm FB}(B^0 \to K^{*0} \mu^+ \mu^-)$	25% [14]	6~%	2%	7%
	$A_{\rm I}(K\mu^+\mu^-; 1 < q^2 < 6 {\rm GeV^2/c^4})$	$0.25 \ [15]$	0.08	0.025	~ 0.02
	$\mathcal{B}(B^+ \to \pi^+ \mu^+ \mu^-) / \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-)$	25% [16]	8%	2.5%	$\sim 10\%$
Higgs	${\cal B}(B^0_s o \mu^+ \mu^-)$	$1.5 \times 10^{-9} \ [2]$	0.5×10^{-9}	0.15×10^{-9}	0.3×10^{-9}
penguin	$\mathcal{B}(B^0 \to \mu^+ \mu^-) / \mathcal{B}(B^0_s \to \mu^+ \mu^-)$	_	$\sim 100 \%$	$\sim 35\%$	$\sim 5~\%$
Omtarity	$\gamma \ (B \to D^{(*)} K^{(*)})$	$\sim 1012^{\circ} \ [19, \ 20]$	4°	0.9°	negligible
triangle	$\gamma \ (B_s^0 \to D_s K)$	_	11°	2.0°	negligible
angles	$\beta \ (B^0 \to J/\psi \ K^0_S)$	0.8° [18]	0.6°	0.2°	negligible
Charm	A_{Γ}	$2.3 \times 10^{-3} [18]$	0.40×10^{-3}	0.07×10^{-3}	_
CP violation	ΔA_{CP}	$2.1 \times 10^{-3} [5]$	0.65×10^{-3}	0.12×10^{-3}	_

IOP, RHUL, 8/04/2014

LHCD Belle-II@SuperKEKB Physics Reach

SuperKEKB Belle-II

- 2015 collider commissioning
- 2016 detector commissioning
- Physics reach
 - golden modes
 - silver modes
 - complementary with LHCb

Observables	Belle	Bel	Belle II	
	(2014)	5 ab^{-1}	50 ab^{-1}	
$\sin 2\beta$	$0.667 \pm 0.023 \pm 0.012$	± 0.012	± 0.008	
α		$\pm 2^{\circ}$	$\pm 1^{\circ}$	
γ	$\pm 14^{\circ}$	$\pm 6^{\circ}$	$\pm 1.5^{\circ}$	
$S(B \to \phi K^0)$	$0.90\substack{+0.09\\-0.19}$	± 0.053	± 0.018	
$S(B\to\eta' K^0)$	$0.68 \pm 0.07 \pm 0.03$	± 0.028	± 0.011	
$S(B\to K^0_S K^0_S K^0_S)$	$0.30 \pm 0.32 \pm 0.08$	± 0.100	± 0.033	
$ V_{cb} $ incl.	$\pm 2.4\%$	$\pm 1.0\%$		
$ V_{cb} $ excl.	$\pm 3.6\%$	$\pm 1.8\%$	$\pm 1.4\%$	
$ V_{ub} $ incl.	$\pm 6.5\%$	$\pm 3.4\%$	$\pm 3.0\%$	
$\left V_{ub}\right $ excl. (had. tag.)	$\pm 10.8\%$	$\pm 4.7\%$	$\pm 2.4\%$	
$ V_{ub} $ excl. (untag.)	$\pm 9.4\%$	$\pm 4.2\%$	$\pm 2.2\%$	
$\mathcal{B}(B \to \tau \nu) \ [10^{-6}]$	96 ± 26	$\pm 10\%$	$\pm 3\%$	
$\mathcal{B}(B \to \mu \nu) \ [10^{-6}]$	< 1.7	5σ	$>>5\sigma$	
$R(D\tau\nu)$	$\pm 16.5\%$	$\pm 5.2\%$	$\pm 2.5\%$	
$R(D^*\tau\nu)$	$\pm 9.0\%$	$\pm 2.9\%$	$\pm 1.6\%$	
$\mathcal{B}(B\to K^{*+}\nu\overline{\nu})~[10^{-6}]$	< 40		$\pm 30\%$	
$\mathcal{B}(B \to K^+ \nu \overline{\nu}) \ [10^{-6}]$	< 55		$\pm 30\%$	
$\mathcal{B}(B \to X_s \gamma) \ [10^{-6}]$	$\pm 13\%$	$\pm 7\%$	$\pm 6\%$	
$A_{CP}(B \to X_s \gamma)$		± 0.01	± 0.005	
$S(B\to K^0_S\pi^0\gamma)$	$-0.10 \pm 0.31 \pm 0.07$	± 0.11	± 0.035	
$\mathcal{B}(B \to X_d \gamma) \ [10^{-6}]$				
$S(B\to\rho\gamma)$	$-0.83 \pm 0.65 \pm 0.18$	± 0.23	± 0.07	
$\mathcal{B}(B_s \to \gamma \gamma) \ [10^{-6}]$	< 8.7	± 0.3		
$\mathcal{B}(B_s \to \tau^+ \tau^-) \ [10^{-3}]$		< 2		
$\mathcal{B}(D_s \to \mu \nu)$	$5.31 \times 10^{-3} (1 \pm 0.053 \pm 0.038)$	$\pm 2.9\%$	$\pm (0.9\%$ -1.3%)	
$\mathcal{B}(D_s \to \tau \nu)$	$5.70 \times 10^{-3} (1 \pm 0.037 \pm 0.054)$	$\pm (3.5\%$ -4.3%)	$\pm (2.3\%$ -3.6%)	
$y_{CP} \ [10^{-2}]$	$1.11 \pm 0.22 \pm 0.11$	$\pm(0.11 \text{-} 0.13)$	$\pm (0.05 - 0.08)$	
$A_{\Gamma} [10^{-2}]$	$-0.03 \pm 0.20 \pm 0.08$	± 0.10	$\pm (0.03 \text{-} 0.05)$	
$A_{CP}^{K^+K^-}$ [10 ⁻²]	$-0.32\pm 0.21\pm 0.09$	± 0.11	± 0.06	
$A_{CP}^{\pi^+\pi^-}$ [10 ⁻²]	$0.55 \pm 0.36 \pm 0.09$	± 0.17	± 0.06	
$A_{CP}^{\phi\gamma} \ [10^{-2}]$	± 5.6	± 2.5	± 0.8	
$\tau \to \mu \gamma \ [10^{-8}]$	< 4.5		< 0.1	
$\tau \to e \gamma ~[10^{-8}]$	< 12.0			
$\tau \to \mu \mu \mu \ [10^{-9}]$	< 21.0	< 4.5	< 0.9	

Neutrino modes

CKM angle y

 $sin2\beta^{eff}$

b->sγ inclusive

charm

Lepton flavour violation

IOP, RHUL, 8/04/2014

інсь

Conclusions

Flavour physics has entered successfully into LHC era

- LHC and detectors (ATLAS, CMS and LHCb) work extremely well
- dedicated LHCb experiment: 179 papers and counting
- B-factories and Tevatron still contributing

Many new and important results

- Weak phase ϕ_s and decay width difference $\Delta \Gamma_s$ in B_s decays
- CKM angle γ competitive with B factories
- Observation for $B_s^{} \to \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
- Strong constraints on new physics
- All consistent with SM few hints for new physics?
 - Angular analysis (P_5') of B^0 $\rightarrow K^{*0} \mu^{+} \mu^{-}$, need more data

• LHC run 2 will start in 2015

- Production cross section σ_{bb} and σ_{cc} doubles, Js: 7/8 \rightarrow 13/14 TeV
- LHCb upgrade and Belle/SuperKEKB
 - Probe/measure New Physics at the percentage level

IOP, RHUL, 8/04/2014

New Physics in Flavour

• Flavour explores new physics (NP) beyond the energy frontier

- Sensitive to NP appearing as virtual particles in loop processes
- Observable deviations from SM expectations in flavour physics
- Rare decays, e.g. Flavour Changing Neutral Current Interactions

Constrained Minimal Supersymmetry

Exclusion ranges

- at large tanß flavour physics excludes full parameter space
- at tan β ~ 30 flavour physics and direct searches complementary

Constraints from $B_{c} \rightarrow \mu^{+}\mu^{-}$

F. Mahmoudi, arXiv:1310.2556

$\frac{LHCb}{LHCb}$ Isospin asymmetry: $B \rightarrow K^{(*)}\mu^{+}\mu^{-}$

Isospin asymmetry

$$A_{\rm I} = \frac{\Gamma(B^0 \to K^{(*)0}\mu^+\mu^-) - \Gamma(B^+ \to K^{(*)+}\mu^+\mu^-)}{\Gamma(B^0 \to K^{(*)0}\mu^+\mu^-) + \Gamma(B^+ \to K^{(*)+}\mu^+\mu^-)}$$

- A_I predicted to be very small in SM
- LHCb results 2011 data: 1 fb⁻¹

 $A_{I}(B \rightarrow K\mu^{+}\mu^{-})$ significant deviation 4.4 σ from zero

10

5

 $A_T(B \rightarrow K^* \mu^+ \mu^-)$

consistent with zero

15

 \mathbf{q}^2 [GeV²/ c^4]

20

IOP, RHUL, 8/04/2014

Franz Muheim

-0.2

-0.3

-0.5

O

$\frac{LHCb}{LHCb}$ Isospin asymmetry: $B \rightarrow K^{(*)}\mu^{+}\mu^{-}$

• LHCb 2011/12 data: 3 fb⁻¹

- Extract A_I measuring four modes
 - $\bullet \quad B^{\underline{\star}} \to K^{\underline{\star}} \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}, \ B^0 \to K_S{}^0 \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
 - $B^{\pm} \rightarrow K^{\star_{\pm}} (\rightarrow K_S^0 \pi^{\pm}) \mu^{+} \mu^{-}$
 - $\bullet \quad B^0 \to K^{\star_0} \left(\to K^{\scriptscriptstyle +} \pi^{\scriptscriptstyle -} \right) \mu^{\scriptscriptstyle +} \mu^{\scriptscriptstyle -}$
- Fit K^(*)µ⁺µ⁻ mass in q² bins

Results

- Estimate p-value for A_I differing from zero assuming constant A_I
- p = 11% (1.5 σ) for A_I in B \rightarrow Kµ⁺µ⁻
- A_I result consistent with SM

talks by Sam Cunliffe, Simon Wright

LHCb-PAPER-2014-006, arXiv:1403.8044

IOP, RHUL, 8/04/2014

HCp Differential Branching Ratios

LHCb 2011/12 data: 3 fb⁻¹

 Measurements compared to predictions from Lattice QCD and Light Cone Sum Rules

Results

 Consistent with SM, but data tend to lie below predictions

 $q^{2} \,[{\rm GeV}^{2}/c^{4}]$

CP Violation in Mixing

Semileptonic Asymmetry

- measures 🔎 in mixing
- very small in SM

Lenz, Nierste, 2012

$$a_{sl}^d = (-4.1 \pm 0.6) \cdot 10^{-4}$$

 $a_{sl}^s = (+1.9 \pm 0.3) \cdot 10^{-5}$

D0 at Tevatron evidence a_{sl} >> SM prediction at 3.0σ

• a_{sl} at LHCb

- Time-integrated asymmetry in $B_s \rightarrow D_s^- \mu^+ v$

 $A = \frac{\Gamma(D_s^- \mu^+) - \Gamma(D_s^+ \mu^-)}{\Gamma(D_s^- \mu^+) + \Gamma(D_s^+ \mu^-)} = \frac{a_{sl}^s}{2} + \left(a_p - \frac{a_{sl}^s}{2}\right) \frac{\int \exp(-\Gamma_s t) \cos(\Delta m_s t) \varepsilon(t) dt}{\int \exp(-\Gamma_s t) \cos(\Delta \Gamma_s / 2 \cdot t) \varepsilon(t) dt}$

- $a_{sl} = (-0.06 \pm 0.50 \pm 0.36)\%$
- does not confirm nor exclude DO result

IOP, RHUL, 8/04/2014

CP Violation in Mixing

Semileptonic Asymmetry

- measures 🔑 in mixing
- very small in SM

Lenz, Nierste, 2012

$$a_{sl}^d = (-4.1 \pm 0.6) \cdot 10^{-4}$$

 $a_{sl}^s = (+1.9 \pm 0.3) \cdot 10^{-5}$

DO final result

 fit for a_{sl}^s, a_{sl}^d and ΔΓ_d

$$a_{\rm sl}^d = (-0.62 \pm 0.43) \times 10^{-2}, \qquad (96)$$

$$a_{\rm sl}^s = (-0.82 \pm 0.99) \times 10^{-2}, \qquad (97)$$

$$\frac{\Delta \Gamma_d}{\Gamma_d} = (+0.50 \pm 1.38) \times 10^{-2}, \qquad (98)$$

$B_s \rightarrow D_s^+ D_s^-$ Lifetime

LHCb: arXiv.1312.1217

• How to measure B_s decay widths Γ_L and Γ_H ?

- use decays to CP even and odd final states
- in limit of small CP violation
 φ_s ≈ 0
- $T_{eff} (B_s \rightarrow D_s^+ D_s^-) \approx 1/\Gamma_L$

LHCb method

- measure directly lifetime ratio in $B_s \rightarrow D_s^+ D_s^-$ and $B^- \rightarrow D^0 D_s^-$ decays

• Result

- $\tau_{\text{eff}} \left(B_s^0 \to D_s^+ D_s^- \right) = 1.379 \pm 0.026 \pm 0.017 \text{ ps}$ $\Gamma_L = 0.725 \pm 0.014 \pm 0.009 \text{ ps}^{-1}$
- Most precise Γ_L measurement

IOP, RHUL, 8/04/2014

LHCb ГНСр

Heavy Quark Expansion (HQE)

predicts A_b Lifetime

$$\frac{\tau_{\Lambda_b^0}}{\tau_{B^0}} = 0.98 \pm O\left(\frac{1}{m_b^3}\right)$$

• LEP and Tevatron measure shorter $\Lambda_{\!\scriptscriptstyle b}$ Lifetime

- LEP average (2003)
- PDG average in 2009

$$\frac{\tau_{\Lambda_b^0}}{\tau_{B^0}} = 0.798 \pm 0.052$$
$$\tau_{\Lambda_c^0} = 1.383^{+0.049}_{-0.048} \text{ ps}$$

• LHCb

- measures directly ratio of $\Lambda_{\rm b}$ to B⁰ lifetime
- use similar final states
- $\Lambda_b \to J/\psi Kp$ (previously unobserved) and $B^0 \to J/\psi K\pi$

ALEPH A_c-lepton (91-95) 1.180 ^{+0.130}_{-0.120} ±0.030 ps 1.300 ^{+0.260} ±0.040 ps ALEPH A-ll (91-95) 1.290 ^{+0.240}_{-0.220} ±0.060 ps OPAL A_c-lepton (90-95) 1.110 ^{+0.190}_{-0.180} ±0.050 ps DELPHI A_-lepton (91-94) 1.320 ±0.150 ±0.070 ps CDF A_-lepton (91-95) 1.593 ^{+0.083}_{-0.078} ±0.033 ps CDF J/\u03c0 (02-06) 1.290 ^{+0.120} ^{+0.087} _{-0.110} ^{-0.091} ps D0 A_c-lepton (02-06) 1.218 ^{+0.130}_{-0.115} ±0.042 ps D0 J/\/A (02-06) 1.383 ^{+0.049}_{-0.048} ps Average for PDG 2009 1 11 12 13 14 15 16 17 Heavy Flavour $\tau(\Lambda_{\rm b})$ (ps) Averaging Group

IOP, RHUL, 8/04/2014

59

LHCD EW Penguin Decay B⁰

- BR = (1.22+0.38-0.32) × 10⁻⁶
- Measured by BaBar and Belle
- New BaBar measurement
 - Differential dB/dq²
 - Sum over exclusive modes
 - $B \rightarrow X_{c} I^{+} I^{-}$ where $I = \mu$ or e

Flavour Changing Neutral Currents

CP Violation in Charm

Direct CP violation in charm

- Predicted to be $\leq 10^{-3}$ in SM
- Long distance effects
- difficult to estimate

$$A_{CP} \equiv \frac{\Gamma(D^0 \to f) - \Gamma(\bar{D}^0 \to \bar{f})}{\Gamma(D^0 \to f) + \Gamma(\bar{D}^0 \to \bar{f})}$$

- A_{raw} (f) depends on production and detection asymmetries
- measure $\Delta A_{CP} = A_{CP}(D^0 \rightarrow K^-K^+) A_{CP}(D^0 \rightarrow \pi^-\pi^+)$

Measurement

- LHCb and CDF: Charge of π_{s}^{\pm} from D^{*+} \rightarrow D⁰ π_{s}^{+} , D^{*-} \rightarrow D⁰ π_{s}^{-} tags the D flavour
- LHCb: Charge of μ^{\pm} from $B \rightarrow D^0 \mu^{\pm} X \text{ tags the D flavour}$

• Results

- inconclusive, need more data
- LHCb analyses on full run 1 data underway

PLB 723 (2013) 33

PRL 108 (2012) 111602

IOP, RHUL, 8/04/2014

