# The CBC2 ASIC for 25 Modules at HL-LHC

Davide Braga

IOP 2014 Joint HEPP and APP Groups Annual Meeting, Royal Holloway, May 2014



Imperial College London



Science & Technology Facilities Council



# **Outline**

- •Tracker upgrade & detector module
- •The CMS Binary Chip (CBC) v.1 & 2
- •CBC2: architecture & performance
- •CBC2 testing •Beam test •TID test

# Phase-II upgrade of the CMS Strip Tracker



- Baseline design: Barrel+5Endcaps
- Based on 2 module types only
- Provides at the same time:
  - *readout data* upon receipt of L1 trigger
  - trigger data @40MHz (10 trigger hits up to η=2.5)



# Basic trigger module concept



- High-PT tracks (stubs) can be identified if cluster centre in top layer lies within a search window in R-Φ (rows)
- $p_T$  cut given by: module radius (z), sensor separation and correlation window

# **CMS Binary Chip (CBC)**

2 versions have now been produced - both in 130nm CMOS

#### **CBC1 (2011)**

- 128 wire-bond pads, 50 mm pitch
- front end designed for short strips, up to 5 cm • DC coupled, up to 1mA leakage tolerant, both sensor polarities
- binary unsparsified readout
- pipeline length 6.4 msec
- chip worked well in lab and test beam
- no triggering features

#### **CBC2 (January, 2013)**

- 254 channels
- ~same front end, pipeline, readout approach as CBC1
- bump-bond layout
- includes triggering features



# **Stub finding logic**

#### Cluster width discrimination (CWD) logic

exclude clusters with hits in >3 neighbouring channels wide clusters not consistent with high pT track

#### **Offset correction & correlation logic**

for a cluster in bottom layer, look for correlating cluster occurring in window in top layer

window width controls pT cut stub found if cluster in bottom layer corresponds to cluster within window in top layer window width programmable up to  $\pm$  8 channels

offset defines lateral displacement of window across chip programmable up to  $\pm$  3 channels





### **CBC2** architecture



254 channels: channel mask: CWD logic: correlation logic: trigger output: triggered data out: 127 from each sensor layer block noisy channels from trigger logic exclude wide clusters >3 for each cluster in lower layer look for cluster in upper layer window

1 bit per BX indicates correlation logic found one (or more) stubs

unsparsified binary data frame in response to L1 trigger

Davide Braga, IC

## **CBC2** performance

- All core functionality meets requirements
- Correlation functionality verified with test pulses, cosmics (backup), and in test beam
- Analogue performance close to simulation and specifications

e.g. **1000e** noise for 5 cm strips (~8 pF) achievable for total channel power of **350 uW** 



#### noise & power vs. external capacitance





# **CBC2 testing activities**

#### Wire-bond CBC2

- Useful to develop wafer probe procedures
- X-rays TID testing

#### 2xCBC2 hybrid

- Hybrid characterization and chip integration
- Bump-bonded ASICs
- Inter-chip links & logic

#### 2xCBC2 mini-module + sensor

- Sr-90 source
- Cosmic rays
- Beam Test







## Pt module beam test at DESY

- December 2013
- 4 GeV positron beam
- Datura telescope + 2 pT modules (1 rotatable to simulate B-field effect) + 2 different strip sensors
- Custom control and DAQ





#### positron beam divergence (small



### Beam test results



Incident Angle

# **Total Ionizing Dose test**

- First xray irradiation to 10 Mrads
- CBC2 operated continuously during irradiation
- monitored currents, biases, pedestal, noise
- no significant change in performance, moderate increase in current before annealing









# **Conclusions and Future Work**

#### Milestones so far:

- ✓ CBC2 working to specs
  - ✓ Stub finding logic functioning
  - ✓ TID dose irradiation test under way
- ✓ First prototype version of 2S module extensively tested
  - ✓ Beam test at DESY successful
  - ✓ Pt selection cut and stub logic demonstrated
  - ✓ DAQ working well

#### **Future work:**

- Continue with 2S module prototyping (8chip hybrid from CERN)
- SEU test of CBC2
- CBC3: final prototype version with full stub readout

### First results to prove the track-trigger concept a very new idea never before implemented

### $\rightarrow$ CMS ambitious plans for a track trigger look promising



