

Search for CP Violation in B[±]→DK[±], D→h[±]h[∓]π⁰ Decays at LHCb

Nazim Hussain on behalf of the LHCb Collaboration

IoP Joint HEP & APP Group Meeting, 8 April, 2014

Introduction

» The CKM angle γ can be measured by studying $B^{\pm} \rightarrow DK^{\pm}$ decays

- » ADS method involves the D decaying into a non-CP eigenstate of a kaon and an ensemble of pions (e.g. $K\pi\pi^0$)
- » Interference between D⁰ and \overline{D}^0 decays gives sensitivity to γ
- » Two prior LHCb analyses have used this method for γ measurement:
 - » $B^{\pm} \rightarrow [hh]_D K^{\pm}$ in Phys Lett **B 712** (2012) 203
 - » $B^{\pm} \rightarrow [K^{\mp}\pi^{\pm}\pi^{+}\pi^{-}]_{D}K^{\pm}$ in Phys Lett **B 723** (2013) 44
- » Suppressed (principal) channels of interest:
 - » $\mathbf{B}^{-} \rightarrow \mathbf{D}\mathbf{K}^{-}, \mathbf{D} \rightarrow \mathbf{K}^{+} \pi^{-} \pi^{0}$ (CP violation)
 - » $\mathbf{B}^{-} \rightarrow \mathbf{D} \pi^{-}, \mathbf{D} \rightarrow \mathbf{K}^{+} \pi^{-} \pi^{0}$ (less CP violation)
- » Favoured (control) modes:
 - » $B^- \rightarrow DK^-, D \rightarrow K^-\pi^+\pi^0$
 - » $B \rightarrow D\pi$, $D \rightarrow K \pi^+ \pi^0$

Why Kππ⁰?

» Statistical perspective

$\mathcal{B}(D^0 \to K^- \pi^+ \pi^0) = (13.9 \pm 0.5)\% \quad \text{VS} \quad \frac{\mathcal{B}(D^0 \to K^- \pi^+ \pi^- \pi^+) = (8.07 \pm 0.20)\%}{\mathcal{B}(D^0 \to K^- \pi^+) = (3.87 \pm 0.05)\%}$

- » In D decays with more than 2 particles in the final state, there are intermediate resonances that must be considered
 - » Coherence factor parameterises effect of these resonances and affects size of the interference that gives sensitivity to γ
 - » Value ranging from 0 to 1: closer to 1, greater the sensitivity to γ
 - » Measured to be 0.82 by CLEO [Phys Lett **B** 731 (2014) 197]
- » Challenge: there's a π^0 in the final state!
 - » 20-30 of these in LHCb acceptance per event
 - » Some photons convert before reaching calorimeter
 - » Modest calorimeter energy resolution

LHCb Detector

Electromagnetic Calorimeter

- Scintillating Pad Detector (SPD) and Pre-Shower Detector (PS) present before ECAL – used for electron/photon distinction
- » ECAL has alternating tiles of lead absorber plates and scintillator tiles

- » Cell sizes vary depending on proximity to the beam pipe
- » Energy resolution of $\frac{\sigma(E)}{E} = \frac{(8-10)\%}{\sqrt{E}} \oplus 0.9\%$

Boosted Decision Tree

- » Selection is primarily based on use of a Boosted Decision Tree (BDT)
- » Trained on a series of kinematic variables including D momentum, $\pi^0 p_T$, B vertex quality
- » Signal sample from Monte Carlo of favoured $B^{\pm} \rightarrow D\pi^{\pm}$, $D \rightarrow K^{\pm}\pi^{\mp}\pi^{0}$
- » Background samples from data (attempting to eliminate combinatoric background)

Dalitz Plots

» Since the coherence factor is known, a full Dalitz analysis isn't required for the extraction of CP observables...

» We can still look at the plots to make sure things look sensible

» Visible structure is seen representing K^{*} and ρ^{0} resonances

Κππ⁰

- » Using full 3 fb⁻¹ of LHCb data set
- » Prominent peaks are visible!
- » Belle has seen evidence of the suppressed DK and D π modes (3.2 σ level), but neither has been observed

$\pi\pi\pi^{0}$ & KK π^{0}

- » Same BDT trained for $K\pi\pi^0$ has been used on these modes
- » Potential first observations here as well!

Conclusions

- » $B^{\pm} \rightarrow DK^{\pm}$ decays at LHCb offer a rich environment for CP violation measurements
 - » Decay modes with a π^0 have yet to be fully exploited in γ measurements
- » Multivariate selection technique (BDT) has been effective at reducing backgrounds for these modes with a π^{0}
- » Visible signals in the control modes for $K\pi\pi^0$, $\pi\pi\pi^0$ and $KK\pi^0$
 - » Potential for several first observations
 - » After unblinding and measurement of CP observables, results will be incorporated into LHCb γ combination measurement
- » CP violation analysis with a neutral pion being performed at a hadron collider experiment: exciting proof of principle!

Backup

IoP Joint HEP & APP Group Meeting, 8 April, 2014

Coherence Factor

