Searching for strongly produced SUSY with two like-charge or three leptons at ATLAS

IOP HEPP Meeting 2014

Thomas Gillam, University of Cambridge

Typical features of events

p

- Many jets large effective mass
- *b*-jets (target 3rd generation squark models, favoured by naturalness)
- MET (in R-parity conserving models)
- Opportunities for forming like-sign lepton pairs (due to gluinos being Majorana fermions)
- Three lepton signatures from longer decay chains

Targeting simplified models

Signal regions

Signal regions

SR	Leptons	N_{b-jets}	Other variables	Additional requirement
				on $m_{\rm eff}$
SR3b	SS or $3L$	≥ 3	$N_{jets} \ge 5$	$m_{\rm eff} > 350 { m ~GeV}$
SR1b	\mathbf{SS}	≥ 1	$N_{jets} \ge 3, E_{\mathrm{T}}^{\mathrm{miss}} > 150 \text{ GeV}, m_{\mathrm{T}} > 100 \text{ GeV}, \text{ veto SR3}$	$m_{\rm eff} > 700 {\rm GeV}$
SR0b	\mathbf{SS}	= 0	$N_{jets} \ge 3, E_{\mathrm{T}}^{\mathrm{miss}} > 150 \text{ GeV}, m_{\mathrm{T}} > 100 \text{ GeV}, \text{veto SR3}$	$m_{\rm eff} > 400 {\rm GeV}$
SR3Llow	3L	-	$N_{jets} \ge 4, 50 < E_{\mathrm{T}}^{\mathrm{miss}} < 150 \text{ GeV}, Z$ veto, veto SR3b	$m_{\rm eff} > 400 {\rm GeV}$
SR3Lhigh	3L	-	$N_{jets} \ge 4, E_{\mathrm{T}}^{\mathrm{miss}} > 150 \text{ GeV}, \text{veto SR3b}$	$m_{\rm eff} > 400 {\rm GeV}$
$m_{\rm eff} = E_{\rm T}^{\rm miss} + \sum p_{\rm T}^{\ell} + \sum p_{\rm T}^{\rm jet}$ Simultaneous maximum likelihood fit				
Shape	fit in <i>m</i> eff	Mode limits	I-dependent in parameter space Model-independe cross section limit	nt S

Backgrounds to same-sign signature

Very low SM background — allows loose MET requirement, gaining sensitivity to compressed SUSY & RPV scenarios

Fake leptons: 'matrix method' estimation

Charge-flipped electrons

 Measure flip rate in data CR (Z peak) with likelihood fit

• Estimate formed by reweighting OS data

$$\epsilon = \frac{N_{SS}}{N_{SS} + N_{OS}}$$

Validation region distributions

Expected exclusion reach $\tilde{g} \rightarrow qqWZ\chi_1^0$ mSUGRA/CMSSM (via squark)

How can we keep SUSY?

- Heavier LSP: compressed spectra => reduced effective mass, MET
- Stealth SUSY: light LSP, near degenerate fermion/boson pairs => low MET
- RPV signals: no LSP => low MET

Conclusions

- Except in compressed scenarios, rule out gluinos to ~1 TeV
- Assumptions of "simple" SUSY or naturalness under strain

• We hope to see significant increase in reach in Run 2!