

$Z + b\overline{b}$ Cross-section Measurements with the ATLAS detector

IOP Meeting 7th-9th April 2014

Peter Davison

$Z + b\overline{b}$ Motivation

- First measurement of differential $Z + b\overline{b}$ cross section
 - Performed in conjunction with Z + b analysis
- Provides opportunity to test perturbative QCD predictions
 - Compare several calculations
 - Potential parton density function (PDF) sensitivity
 - PDF 4/5 flavour number scheme discrimination (more sensitive for Z + b)
- $Z + b\overline{b}$ is a background to other interesting physics
 - Higgs production in $HZ \rightarrow Zb\overline{b}$ channel

Analysis Outline

• Measure $Z + b\overline{b}$ cross-section differentially in four variables: Zp_T , Z|y|, M_{bb} and ΔR_{bb} using 2011 data collected by ATLAS

Extracting a $Z + b\overline{b}$ yield

likelihood fit, using jet flavour discriminating

Extract yield by performing extended-

variable, CombNNc= $\ln(\frac{p_b}{p_c})$, where

Sum over both tagged jets for Z + bb

 $> p_b$: probability jet is a b-jet

jets

per 4.6fb⁻

 $> \ln^{p_b}/p_c$ has different shape for b and non-b

➢ Form bb and non-bb templates

- Fit to the data distribution of ∑*CombNNc* >Extract number of Z + bb̄ events
 >Backgrounds included as a fixed template
- For differential cross sections perform fit in bins of the differential variable

Unfolding

- Need to account for detector level effects on yield
 - Detector resolution, inefficiencies, acceptance etc.
- Keep particle level selection close to detector event selection
- Split into two unfolding factors:
 - correction for b-tagging inefficiency, ε_{bb}
 - bin-by-bin correction factors, C_f
- Correct $Z + b\overline{b}$ yield, N_{bb}

$$\sigma = \frac{N_{bb} \times C_f \times \varepsilon_{bb}}{\mathcal{L}}$$

Systematics

- Systematics can affect the fit and the unfolding
- Each systematic source is varied independently & propagated through the analysis
 - Relative change from default is taken as uncertainty
 - b-tagging(left), Jet energy scale (right) and all other systematics (next slide)

Systematics

- Systematics can affect the fit and the unfolding
- Each systematic source is varied independently & propagated through the analysis
 - Relative change from default is taken as uncertainty

- Dominant systematics:
 - b-tagging
 - b-template shape uncertainty
- Individual systematics all smaller than statistical uncertainty

Theory Predictions

Compare to NLO theory predictions:

- MCFM parton level NLO calculation
 - Corrected for non-perturbative effects
 - Corrected for QED final state radiation
- aMC@NLO, NLO merged to parton shower
 - ➢ 4FNS (massive b-quark) and 5FNS calculations
 - Showered and hadronized with Herwig++

Compare to LO multi-leg predictions:

- Alpgen
- Sherpa

Comparison with theory predictions

Example here shown comparison between data and theory for ΔR_{bb} distribution

Conclusions

• Have measured first differential cross sections for $Z + b\overline{b}$ production using 2011 data

 Predictions agree reasonably well with data within uncertainties

• With higher recorded luminosity in 2012 can improve the statistical precision of measurement

Backups

Fit Caveat: single-b scale factor

- As mentioned at beginning this analysis is in conjunction with Z+b analysis
- Found MC under predicts Z+b events
 - Need to adjust our Z+bc and Z+bl templates in $Z + b\overline{b}$ fit to account for this
- Define Control region Z+b+1jet, extra jet(s) not tagged
 - Extra (non-tagged) jet(s) to accurately represent our event kinematics
- Fit flavour discriminating variable for the tagged jet, $\ln(p_b/p_u)$

- Fit c-jets separately from light jets (also check Z+c contribution)
- Have to scale up Z+b contribution in MC to fit to data
- Find need to scale bc & bl contributions in $Z + b\overline{b}$ fit by 1.34

Control plots

- The two lepton channels are combined before fitting
 - Increases available statistics
 - Lepton specific systematics small compared to shared systematics

B-tag efficiency other variables

Correction factor other variables

Unfolding

- Choose bin-by-bin unfolding by default
 - Have minimal migrations between bins
 - Results in diagonal migration matrix

 Matrix shows probability particle level selection is reconstructed in certain detector level bin

Results Zp_T

b-tagging

- B-tagging of jets makes use of tracks associated with the jets
 - Impact parameters
 - secondary vertices
- B-tagging scale factors are applied to MC so that b-tagging efficiency is the same as in data
- These scale factors have uncertainties associated
 - Different methods of deriving scale factors
 - Each with their sources of uncertainties
 - These uncertainties are then combined into single set of uncorrelated uncertainties

