Imperial College London

Evidence for the 125 GeV Higgs boson decaying to a pair of tau leptons at CMS

IoP Meeting: Royal Holloway, University of London 8th April 2014

Rebecca Lane

on behalf of the CMS Collaboration

Outline

- Introduction
- Analysis Overview
 - Event separation
 - Backgrounds
 - Mass reconstruction
- Expected limits
- Results
 - Observed limits
 - Best fit signal strength
 - S/B plots
 - Significance
 - Mass scan
- Summary

Introduction

- July 2012: observation of a new boson by the ATLAS and CMS experiments, with m_H ~ 125 GeV.
- Observation made in the bosonic decay modes: WW, ZZ and γγ.
 Question remains: Does it decay to fermions?
- H→ττ has high (~7%) branching ratio at low Higgs masses, but also large backgrounds from Z→ττ, W+jets, QCD and others.

H branching ratios (BR):

 \rightarrow Study final state with $H \rightarrow \tau \tau$

Introduction

 Results in this talk are the latest CMS H→ττ analysis with the full dataset from 2011 (7 TeV) and 2012 (8 TeV) for a recent paper: arXiv:1401.5041

Analysis Overview: Events

- Select events in `channels' based on all possible final states of the two τ 's: e τ_h , $\mu \tau_h$, e μ , $\tau_h \tau_h$, $\mu \mu$ and ee, where τ_h = a tau decaying hadronically.
- Further split into `categories' to separate events of different S/B and enhance selection of the different Higgs production modes:
 - 1-jet sensitive to ggH, 2-jet for VBF and dedicated (separate) VH analysis.
 - 0-jet background dominated: helps control backgrounds and their uncertainties.

Analysis Overview: Backgrounds

- Use data driven methods for background estimation.
- Plot of $m_{\tau\tau}$ in background dominated category shows major contributions:

$m_{\tau\tau}$ Reconstruction

- Always have at least one neutrino from tau decays.
- Can construct "visible mass" using just the visible products, or use a likelihood based approach to reconstruct the full mass of the tau pair.
- Mass resolution 15-20%, and gives better separation of Z/H:

- Signal extracted from fit to m_π.
- Analysis blinded in signal sensitive region: $100 < m_{tt} < 150$ GeV.

Expected Limits

NOTE: Associated production VH also included in final combination.

For combination, expected limit at 125 GeV is 0.53 \rightarrow within standard model sensitivity

e.g. μτ_h channel, 8 TeV

Results: Post-fit Mass Distributions

R.Lane (I.C.)

Results: Observed Limit

at 125 GeV is 1.26 (0.53)

Results: S/B plots

Combined mass plot, weighting by expected S/(S+B). Includes $e\tau_h$, $\mu\tau_h$, $e\mu$, $\tau_h\tau_h$ channels

Arranging events in bins of S/(S+B), and highlighting the contributions of the different categories. Includes all channels.

Results: Signal Strength

Best fit μ = 0.78 ± 0.27

Results: Significance

Observed (expected) significance at 125 GeV is 3.2σ (3.7 σ).

> $3\sigma \rightarrow$ "evidence" for H $\rightarrow \tau\tau$

Results: Mass Scan

Likelihood distribution shows observed best fit mass compared with the expectation for a 125 GeV Higgs.

We fit a parabola to extract the best fit mass.

Best fit mass = 122 ± 7 GeV

Summary

- A search has been performed in the H→ττ final state using the complete 2011 and 2012 dataset from the CMS detector.
- An excess of events above the expectation from backgrounds has been seen.
- This excess corresponds to an observed significance of 3.2σ compared with 3.7σ expected for 125 GeV Higgs, meaning we have > 3σ evidence for H→ττ.
- This excess is compatible with the particle observed in the bosonic decay modes:
 - $-\mu = 0.78 \pm 0.27$, with all channels and categories consistent.
 - Best fit mass $m_H = 122 \pm 7 \text{ GeV}$.

Backup

Hadronic taus

- "Particle Flow" used to combine information from all sub-detectors to classify all candidate particles in an event.
- This information is used to reconstruct all the different decay modes of the tau
- Mass distribution used to control energy scale in each decay mode.

Categories for all channels

08/04/2014

Systematics

Uncertainty	Affected processes	Change in acceptance
Tau energy scale	signal & sim. backgrounds	1–29%
Tau ID (& trigger)	signal & sim. backgrounds	6–19%
e misidentified as τ_h	$Z \rightarrow ee$	20-74%
μ misidentified as $ au_h$	$ m Z ightarrow \mu \mu$	30%
Jet misidentified as $ au_h$	Z + jets	20-80%
Electron ID & trigger	signal & sim. backgrounds	2–6%
Muon ID & trigger	signal & sim. backgrounds	2–4%
Electron energy scale	signal & sim. backgrounds	up to 13%
Jet energy scale	signal & sim. backgrounds	up to 20%
$E_{\rm T}^{\rm miss}$ scale	signal & sim. backgrounds	1-12%
ε_{b-tag} b jets	signal & sim. backgrounds	up to 8%
ε_{b-tag} light-flavoured jets	signal & sim. backgrounds	1–3%
Norm. Z production	Z	3%
m Z ightarrow au au category	m Z ightarrow au au	2–14%
Norm. $W + jets$	W + jets	10-100%
Norm. t ī	tī	8-35%
Norm. diboson	diboson	6–45%
Norm. QCD multijet	QCD multijet	6-70%
Shape QCD multijet	QCD multijet	shape only
Norm. reducible background	Reducible bkg.	15-30%
Shape reducible background	Reducible bkg.	shape only
Luminosity 7 TeV (8 TeV)	signal & sim. backgrounds	2.2% (2.6%)
PDF (qq)	signal & sim. backgrounds	4–5%
PDF (gg)	signal & sim. backgrounds	10%
Norm. ZZ/WZ	ZZ/WZ	4-8%
Norm. $t\bar{t} + Z$	$t\bar{t}+Z$	50%
Scale variation	signal	3–41%
Underlying event & parton shower	signal	2-10%
Limited number of events	all	shape only

H→ττ CMS VBF Mass Plots

$H \rightarrow \tau \tau CMS VH$ channels

R.Lane (I.C.)

300

ΖH

Results: Couplings

