Imperial College London

MINING FOR DARK MATTER

Henrique Araújo Imperial College London

On behalf of the LUX-ZEPLIN Collaboration

HEPP/APP IOP Meeting, 7-9 APR 2014, RHUL

TWO-PHASE XENON TPC

S1: prompt scintillation signal

- Light yield: ~60 ph/keV (ER, 0 field)
- Scintillation light: 178 nm (VUV)
- Nuclear recoil threshold ~5 keV

S2: delayed ionisation signal

- Electroluminescence in vapour phase
- Sensitive to single ionisation electrons
- Nuclear recoil threshold ~1 keV

S1+S2 event by event

- ER/NR discrimination (>99.5% rejection)
- mm vertex resolution + high density: self-shielding of radioactivity backgrounds

LXe is the leading WIMP target:

- Scalar WIMP-nucleon scattering rate dR/dE~A², broad mass coverage >5 GeV
- Odd-neutron isotopes (¹²⁹Xe, ¹³¹Xe) enable SD sensitivity; target exchange
- No damaging intrinsic nasties (¹²⁷Xe short-lived, ⁸⁵Kr removable, ¹³⁶Xe 2 $u\beta\beta$ ok)

$\mathsf{ZEPLIN} \to \mathsf{LUX} \to \mathsf{LUX}\text{-}\mathsf{ZEPLIN}$

- UK-led ZEPLIN programme at Boulby (2001-2011)
 - Pioneered two-phase xenon technology
 - World class results from 3 xenon experiments
 - Fiducial mass ~6 kg

• LUX operating at Sanford Underground Laboratory

- Imperial, Edinburgh and UCL joined after ZEPLIN-III
- Present world-leading experiment (see talks by L. Reichhart and A. Bailey)
- Fiducial mass ~100 kg
- LZ: next-generation experiment
 - LZ formed with MOU between LUX and ZEPLIN-III in 2008
 - Selected by DMUK for construction proposal to STFC
 - Fiducial mass ~6,000 kg (~10⁻⁴⁸ cm² sensitivity)
 - Conceptual design nearly completed, construction f/ 2015

The 8-m diameter LUX water tank, Davis Campus, 4850-ft u/g level, Sanford Underground Research Facility

• TPC PARAMETERS

- -1.5 m diameter/length (3x LUX)
- -7 tonne active LXe mass (28x LUX)
- -2x 241 3-inch PMTs (4x LUX)
- Highly reflective PTFE field cage
- -100 kV cathode HV (10x LUX)
- Electron lifetime 3 ms (3x LUX)

PHYSICS PARAMETERS

- 5.8 keVr S1 threshold (4.5 keVr LUX)
- 0.7 kV/cm drift field, 99.5% ER/NR disc. (already surpassed in LUX at 0.2 kV/cm)

TPC CALIBRATION

- ER: Dispersed sources: Kr-83m, CH3T
- NR: AmBe, YBe, D-D generator

LZ AT DAVIS

IMPORTANT BACKGROUNDS

Neutrons and gamma-rays from internal radioactivity

- Die out very quickly into xenon target, leaving ~6-tonne fiducial
- Layered, near-hermetic detector strategy plus self-shielding and accurate 3D position reconstruction are extremely effective

See talk

by C. Ghag

INTRINSIC BACKGROUNDS

Intrinsic electron backgrounds

- Controlled with modest discrimination (99.5%) already achieved in LUX
- ⁸⁵Kr: require <0.02 ppt Kr (best LUX production batch ~0.2 ppt)
- ²¹⁴Pb: require <0.6 mBq radon in active volume (cf. $\sim \mu$ Bq in Borexino, SNO)
- $2\nu\beta\beta$ from ¹³⁶Xe dominates only >20 keVee (signal acceptance <6 keVee)

DOMINANT BACKGROUNDS

- Solar pp v-e elastic scattering is dominant e-recoil background
 - 1.46 events in 1,000 live days x 6,000 kg (99.5% discrimination, 50% acceptance)
- CNS is dominant nuclear recoil background
 - ⁸B solar neutrinos: significant number of events, but ~0 above 6 keVr threshold
 - Small background from atmospheric and diffuse supernova neutrinos
 - 0.26 events in 1,000 live days x 6,000 kg (50% acceptance)

LZ SENSITIVITY

See talk by P. Beltrame for axion sensitivity

LZ COLLABORATION

US (17) + UK (7) + PT (1) + RU (1)

- $\ensuremath{\boldsymbol{\Xi}}$ University of Alabama
- $\ensuremath{\boldsymbol{\Xi}}$ Brown University
- lpha University of California, Berkeley
- $\ensuremath{^{\mbox{$\mselem{T}$}$}}$ University of California, Davis
- lpha University of California, Santa Barbara
- $\ensuremath{\boldsymbol{\Xi}}$ Case Western Reserve University
- \bowtie Daresbury Laboratory
- µ Edinburgh University
- $\ensuremath{\ensuremath{\boldsymbol{\mu}}}$ Imperial College London
- µ MEPHI-Moscow, Russia
- **X** Lawrence Berkeley National Laboratory
- **□** Lawrence Livermore National Laboratory

- µ University of Maryland
- $\ensuremath{\boldsymbol{\Xi}}$ University of Oxford
- \bowtie Rutherford Appleton Laboratory
- $\ensuremath{\boldsymbol{\Xi}}$ University of Rochester
- $\ensuremath{\boldsymbol{\Xi}}$ Sheffield University
- \bowtie SLAC National Accelerator Laboratory
- ightarrow SD School of Mines & Technology
- lpha University of South Dakota
- µ Texas A&M University
- $\ensuremath{\ensuremath{\square}}\xspace$ University College London
- $\ensuremath{\boldsymbol{\Xi}}$ Washington University
- $\ensuremath{\boldsymbol{\Xi}}$ University of Wisconsin
- $\ensuremath{\boldsymbol{\Xi}}$ Yale University