Probing New Physics through Lepton Flavour Violation

Evgueni Goudzovski

(University of Birmingham) eg@hep.ph.bham.ac.uk

Outline:

- 1) Introduction
- 2) Searches for the μ -e conversion (COMET, Mu2e)
- 3) Searches for LFV in muon decays (MEG, Mu3e)
- 4) Searches for LFV in kaon decays (NA62)
- 5) Summary

HEPP & APP Annual Meeting Royal Holloway, University of London • 8 April 2014

Charged Lepton Flavour Violation

Neutrino oscillations: generalization of the Standard Model.
Within vSM, CLFV is induced by neutrino oscillation in loops.
Unlike FCNC involving quarks, CLFV rates are negligible.

♦ This suppression is accidental due to smallness of ∆m²_{ij}.
 ♦ Can be enhanced beyond the SM (e.g. massive sleptons).

Experiments: history & prospects

New physics contributions: $\mu \rightarrow e$

LFV in K decays

Kaons decays:

- Copious production: high statistics.
- Simple decay topologies: clean experimental signatures.
- Source of tagged π⁰ via K⁺→π⁺π⁰, K_L→3π⁰, ... : best limits for LFV π⁰ decays.

Sensitivity to the 4-fermion contact terms:

Example: $K_L \rightarrow \mu^+ e^-$

Dimensional argument: $\frac{\Gamma_X}{\Gamma_{SM}} \sim \left(\frac{g_X}{g_W} \cdot \frac{M_W}{M_X}\right)^4$ For $g_X \approx g_W$ and $\mathcal{B} \sim 10^{-12}$, $M_X \sim 100 \text{ TeV}$

Muon conversion

Muonic atoms

Muonic atom formation:

- Stopped μ^- falls into the 1s ground state.
- Emission of characteristic X-rays: can count stopped muons.
- (a) Muon decay-in-orbit (DIO): $\mu^-(A,Z) \to e^- \bar{\nu}_e \nu_\mu(A,Z)$ \checkmark rate weakly decreases with Z

(b) Muon capture by nucleus:

- $\mu^-(A,Z) o
 u_\mu(A,Z-1)^*$
- \checkmark rate $\sim Z^4$;
- ✓ unstable daughter nucleus (**n**, **p**, γ emission)

(c) New Physics: coherent muon conversion $\mu^- N
ightarrow e^- N$

 10^{2} 10 20

Muon conversion: $\mu^- N \rightarrow e^- N$

- Monochromatic electrons (E_e≈m_µ=106 MeV) well above Michel endpoint for free muon decay (E_e≈m_µ/2 =53 MeV).
- ✤ Background is *beam-related* rather than *detector-related*.
- Very high rate experiments are in principle possible.

For muonic AI,

Decay-in-orbit (DIO)

- ✤ Key issues: good energy resolution and minimal energy loss.
- ✤ Fraction of DIO within 1 MeV from endpoint: ~10⁻¹⁷.
- * Energy resolution of near-future experiments: $\delta E_e \sim 100 \text{ keV}$.
- ↔ DIO is not a limiting factor at $R_{\mu e} \sim 10^{-17}$ precision.

E. Goudzovski / IOP meeting, 8 April 2014

SINDRUM-II at PSI

COMET at J-PARC

COMET phase I (2016+)

- ✤ Protons on target: 4×10¹⁸.
- Signal acceptance: ~6%. (timing: 39%, geometrical: 24%, momentum cut: 74%, trigger: 90%).
- Expected background: 0.03 events (DIO: 0.01 [determines the p_e cut], RPC: 0.01, anti-protons: 0.01).
- ✤ Expected SES: 3×10⁻¹⁵.

Mu2e at FNAL

Mu2e sensitivity

- ✤ Protons on target: 3.6×10²⁰.
- * μ^- stops per proton on target: 0.16%.
- ✤ Signal acceptance: 5.25% (timing: 51%, selection & trigger: 10%).
- Expected total background: 0.41 events (DIO: 0.22, cosmic: 0.05, RPC: 0.03, anti-protons: 0.10).
- ✤ Goal SES: 2.4×10⁻¹⁷.

LFV muon decays

 $\mu^+ \rightarrow e^+\gamma$: backgrounds Signal: **Backgrounds:** two-body decay Radiative Michel decay (RMD) Accidental 180° e+ $E_e=E_\gamma=rac{m_\mu}{2}=52.8~{
m MeV}$ Michel decay and photon from RMD, $e^+e^- \rightarrow \gamma \gamma$, $eN \rightarrow eN \gamma$ $heta_{e\gamma}=180^\circ, \ t_{e\gamma}=0$

Accidental background dominates (>90%):

- contamination (N_{acc}/N_{sig}) scales linearly with instantaneous muon rate;
- * therefore continuous rather than pulsed beam ($\sim 3 \times 10^7 \ \mu^+/s$);
- background level is determined by the detector resolution.

MEG at PSI (2008–2013)

Gradient magnetic field: bending radius ~p, not ~p_T.

- only e⁺ near Michel endpoint reach the tracker;
- ☆ small number of curls for e⁺ emitted at 0≈90°;
- therefore excellent spectrometer rate capability.

EM calorimeter: 846 PMTs immersed in 900 litres of LXe.
prompt response: low pile-up.

Drift chamber

MEG 2009-2011 data

19

MEG result

- ✤ MEG data taking completed in 2013.
- Sensitivity is limited by the accidental background.
- Improved detector resolution required to go beyond the ~10⁻¹³ sensitivity.

MEG upgrade

Mu3e at PSI: $\mu^+ \rightarrow e^+e^+e^-$

For loop NP contributions, $\mathcal{B}(\mu^+ \to e^+e^+e^-)/\mathcal{B}(\mu^+ \to e^+\gamma) \sim \alpha$ Mu3e goal: $\mathcal{B}(\mu^+ \to e^+e^+e^-) \sim 10^{-16}$ (4 orders below SINDRUM, 1988) Note: $\mu^+ \to e^+e^+e^-$ is sensitive to contact interactions. Dominant irreducible background: Accidentals radiative Michel decay + conversion

 $\mu^+ o e^+
u ar{
u} \gamma^* \ o e^+ e^+ e^-
u ar{
u}$

Excellent momentum resolution required (<1MeV/c); determines the sensitivity

 e^+

e

e⁺

Electrons (e⁻) from:
photon conversions;
Bhabha scattering
(e+e⁻ vertex, missing energy);
mis-reconstruction.

Excellent vertex and time resolution required 22

Mu3e detector

- ✤ Acceptance over a wide momentum range: MEG tracker cannot be adapted.
- ↔ Beamline upgrade (~10⁹ μ ⁺/s) required to reach ~10⁻¹⁶ sensitivity.
- SINDRUM sensitivity was limited by radiative background (~10⁻¹⁴) though upper limit (B<10⁻¹²) is determined by the number of muon stops.

Precision tracking: ~10⁸ Monolithic Active Pixel Sensors (HV-MAPS). High granularity, minimal material budget (pixel size: ~80 μm, thickness: ~50 μm).

Precision timing: scintillator fibre/tile hodoscope, ~100ps resolution. 23 E. Goudzovski / IOP meeting, 8 April 2014

Charged kaon decays

NA62 at CERN

The challenge: $K \rightarrow \pi v \bar{v}$

SM: box and penguin diagrams

Ultra-rare decays with the highest CKM suppression:

 $A \sim (m_t/m_W)^2 |V_{ts}^*V_{td}| \sim \lambda^5$

- ✤ Hadronic matrix element related to a measured quantity (K⁺→ $\pi^0 e^+\nu$).
- SM precision surpasses any other FCNC process involving quarks.
- ★ Measurement of $|V_{td}|$ complementary to those from B–B mixing or B⁰→ργ.
- Optimal probe for non-MFV (Gino Isidori, ESPP open symposium 2012)

E. Goudzovski / IOP meeting, 8 April 2014

SM branching ratios Brod et al., PRD 83 (2011) 034030

Мс	ode	BR _{SM} ×10 ¹¹		
K⁺→π	$z^+ v \overline{v}(\gamma)$	7.81±0.75±0.29		
$K_L \rightarrow$	$\pi^0 v \overline{v}$	2.43±0.39±0.06		
		CKM parametric		
	Theoretically clean, sensitive to new physics,			

almost unexplored

NA62 aim: collect ~100 SM K⁺ $\rightarrow \pi^+ v \overline{v}$ decays with <20% background in 2 years of data taking using a novel decay-in-flight technique.

<u>Decay signature</u>: high momentum K⁺ (75GeV/c) → low momentum π^+ (15–35 GeV/c). <u>Advantages</u>: max detected K⁺ decays/proton ($p_K/p_0 \approx 0.2$); efficient photon veto (>40 GeV missing energy); good π^+ vs μ^+ identification with RICH. Un-separated beam (6% kaons) → higher rates, additional backgrounds.

NA62 detector

NA62 installation

Photon veto (LAV) installation

Cherenkov kaon tagger (CEDAR+KTAG)

LFV in K[±] and π^0 decays

Mode	UL at 90% CL	Experiment	Reference
$K^+ ightarrow \pi^+ \mu^+ e^-$	$1.3 imes10^{-11}$	BNL E777/E865	PRD 72 (2005) 012005
$K^+ o \pi^+ \mu^- e^+$	$5.2 imes10^{-10}$		
$K^+ o \pi^- \mu^+ e^+$	$5.0 imes10^{-10}$	BNL E865*	PRL 85 (2000) 2877
$K^+ \rightarrow \pi^- e^+ e^+$	$6.4 imes10^{-10}$]		
$(K^{\pm}) \rightarrow \pi^{\mp} \mu^{\pm} \mu^{\pm}$	$1.1 imes10^{-9}$ (CERN NA48/2	PLB 697 (2011) 107
$K^+ ightarrow \mu^- \nu e^+ e^+$	$2.0 imes10^{-8}$	Geneva-Saclay	PL 62B (1976) 485
$K^+ ightarrow e^- u \mu^+ \mu^+$	no data		
$\pi^0 ightarrow \mu^+ e^-$	$3.6 imes10^{-10}$	FNAL KTeV	PRL 100 (2008) 131803
$\pi^0 o \mu^- e^+$	$3.6 imes10^{-10}$		

* CERN NA48/2 sensitivities for these 3 modes are similar to those of BNL E865

NA62: nominally 1.2×10^{13} K⁺ decays in fiducial volume. Expected SES: ~10⁻¹² for K⁺ decays, <10⁻¹¹ for π^0 decays.

NA62 is expected to improve on all these decay modes

- Muons will play a central role in LFV searches. Upcoming specialized experiments: COMET, Mu2e, MEG-II, Mu3e.
- Near-future muon conversion and decay experiments aim at sensitivities from ~10⁻¹³ to ~10⁻¹⁷.
- In other sectors, significant progress can be achieved at marginal cost by building on existing experiments.
- ✤ NA62 is expected operate as a multi-purpose K⁺ decay experiment with ~10⁻¹² sensitivity to LFV K⁺ and π^0 decays.

SPARES

COMET phase II detector prototype

(to be tested during Phase I)

"Transverse tracker":

Straw tube tracker (5 multi-layer modules). NA62-type straws produced at JINR (Dubna). Momentum resolution: $\delta p_e = few \times 100 \text{ keV/c}$.

- EM calorimeter: GSO or LYSO crystals.

Resolutions:

- ✤ Energy: <5% at 105 MeV.</p>
- ✤ Position: <1.5 cm.</p>

 ✓ Redundant momentum measurement, avoiding tracker pattern recognition errors.
 ✓ Provides the trigger.

Recent K[±] experiments at CERN

Experiment	NA48/2	NA62-R _K	NA62
	(K [±])	(K [±])	(K ⁺ ; planned)
Data taking period	2003–2004	2007–2008	2014–2017
Beam momentum, GeV/c	60	74	75
RMS momentum bite, GeV/c	2.2	1.4	0.8
Spectrometer thickness, X ₀	2.8%	2.8%	1.8%
Spectrometer P _T kick, MeV/c	120	265	270
M(K [±] $\rightarrow \pi^{\pm}\pi^{+}\pi^{-}$) resolution, MeV/c ²	1.7	1.2	0.8
K decays in fiducial volume	1.9×10 ¹¹	2.5×10 ¹⁰	1.2×10 ¹³
Main trigger	Three-track;	e±	$K_{\pi\nu\nu}$ +
	$K^{\pm} \rightarrow \pi^{\pm} \pi^{0} \pi^{0}$		

The new NA62 detector:

Same detector (NA48)

- beam spectrometer and kaon tagger;
- improved mass reconstruction and particle identification;
- hermetic photon veto.

NA48/2 K[±] $\rightarrow \pi^{\mp}\mu^{\pm}\mu^{\pm}$ upper limit

- ✤ Previous BNL E865 limit improved by a factor ~3.
- ♦ By-product of the $K^{\pm} \rightarrow \pi^{\pm} \mu^{\pm} \mu^{\mp}$ analysis: non-optimized procedure.
- * A dedicated re-analysis has a potential sensitivity of $\sim 10^{-10}$.

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$ at BNL E747/E949

Technique: K⁺ decay at rest

Data taking: E787 (1995–98), E949 (2002). Separated K⁺ beam (710 MeV/c, 1.6MHz). PID: range (entire $\pi^+ \rightarrow \mu^+ \rightarrow e^+$ decay chain). Hermetic photon veto system.

Observed candidates: 7 Expected background: 2.6 Final result: BR

→ Significant background from the $K_{2\pi}$ decay (~30%) due to π^+ scattering in the target.

> PRL 101 (2008) 191802; PRD 79 (2009) 092004 **37**

NA62: $K_{\pi\nu\nu}$ signal region

LNV in K decays

Proof of principle: NA48/2

♦ Precision limited by background from π[±]→µ[±]ν, despite SES ≈ 3×10⁻¹¹.
 ♦ A dedicated re-analysis (in progress) has a sensitivity of ~10⁻¹⁰.

NA62 timeline

- ✤ 5 years of construction interleaved with a Technical Run in October 2012
- First Run with full detector in 2014
- Plan 3 physics data taking runs before LHC Long Shutdown 2 (LS2)

Triggering on lepton pairs

NA62 three-track decay rate upstream CHOD: $F_{3track} = 640 \text{ kHz}$ \rightarrow Too high to collect all three-track decays

Available L0 trigger primitives:

♦ Q_N: at least N hodoscope quadrants;
 ♦ LKR_N(x): at least N LKr clusters

with energy E>x GeV;

 MUV_{N} : hits in at least N MUV3 pads.

Possible L0 triggers for LFV searches:

ee pair: μe pair: μμ pair: $Q_2 \times LKR_2(15)$ $Q_2 \times LKR_1(15) \times MUV_1$ $Q_2 \times MUV_2$

Total expected lepton pair L0 rate: ~100 kHz → Charge-blind lepton pair collection is feasible