

Neutrino Mass Searches with Beta Decay Experiments

Jeff Hartnell

University of Sussex

IoP Particle Physics Conference at RHUL

8th April 2014

Introduction

- Why study neutrinos?
- Where do we stand on neutrino masses?
- Single Beta-decay
 - Experiments
 - Sensitivities
- Neutrinoless Double Beta Decay (0vββ)
 - Current results
 - Experiments under construction (UK focus)

Why study neutrinos?

Where do we stand on neutrino masses?

Straightforward but detailed picture...

Where do we stand on neutrino masses?

– Upper limits on:

- v_e from tritium beta decay
- sum from cosmology
- ν_{ββ} from 0vββ (if Majorana)

– Lower limits on:

Heaviest two neutrinos from osc. expts

- Bottom Line:

- Heaviest neutrino: $0.05 < m_v < 2.2 \text{ eV}$ (0.2 eV cosmology)
- Lightest neutrino could have zero mass

S University of Sussex

[G. Drexlin – NuPhys2013]

Direct Beta-decay Measurements

- Model independent measurement of $m(v_e)$
 - based solely on kinematic parameters & energy conservation

• 2 main expt. approaches: calorimeter or spectrometer

University of Sussex

Jeff Hartnell, IoP/RHUL, Apr. '14

9

Ονββ

(and $2\nu\beta\beta$)

Why look for $0\nu\beta\beta$?

- Is lepton number violated?
- Are neutrinos their own antiparticles?
- What's the absolute neutrino mass scale?

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 \left(\frac{\langle m_{\nu} \rangle}{m_{\rho}}\right)^2$$

Ονββ Experimental Signature

Where do we stand on $0\nu\beta\beta$ neutrino masses?

Synergy with Oscillation Expts

If osc. expts show the mass hierarchy is inverted AND

 $0v2\beta$ expts **don't** see a signal for $m_v < ~15$ meV

We know neutrinos are Dirac not Majorana (assuming no extra new physics)

Double Beta Decay Experiments

- Currently running experiments
 - CANDLES
 - KamLAND-Zen (upgrades underway)
 - EXO-200
 - GERDA
- Experiments under construction
 - CUORE (currently running COURE-0)
 - Majorana "Demonstrator"
 - NEXT

- SuperNEMO (NEMO3 recently ran)

– SNO+

University

[Mark Chen, NuPhys2013]

Current Results

Focus Now on UK Efforts

For more detail see Parallel session 1E Rare/Precision Lepton Physics This afternoon at 1pm

NEMO3/SuperNEMO: Stefano TORRE, Guillaume EURIN, Pawel GUZOWSKI

> SNO+: Philip JONES, Ashley BACK

supernemo

collaboration

UK groups: Imperial, Manchester, UCL, UCL-MSSL, Warwick

Builds on Successful NEMO-3

SuperNEMO Detector

University of Sussex

SuperNEMO Concept

- Tracking-calorimeter
 - Trade off isotope mass for event topology
- Why take this approach?
 - Build on NEMO-3 success
 - Topology very powerful
 - Identify and suppress backgrounds
 - Zero-backgrounds for demonstrator
 - Characterise the mechanism of $0\nu\beta\beta$ decay (on discovery)

1256 keV

50 cm

50 cm

source foil

— X

- Flexibility in isotope choice

832 keV

UK SuperNEMO Contributions

UK building a 2000 channel Geiger-mode tracking detector

Tracker wiring robot (Manchester)

[Dave Waters, seminar]

Radon Concentration Line

- UK built most sensitive radon detector: important technology for many expts
- Need < 100 Rn-atoms/m³ (!)

UK groups: Oxford, Sussex, Queen Mary, Liverpool, Sheffield, Lancaster

Acrylic vessel (AV) 12 m diameter

780 tonnes of LAB LS

1700 tonnes H₂0 inner shielding

5700 tonnes H₂0 outer shielding

~9500 PMTs

O(tonne) 0vββ element/isotope

Jeff Hartnell, IoP/RHUL, Apr. '14

National Geographic

SNO+ Concept

- Load liquid scintillator with $0\nu\beta\beta$ isotope
 - Trade off energy resolution for higher statistics and lower backgrounds
- Why take this approach?
 - Cost-effective: detector already exists
 - Various isotopes can be used
 - Shielding:
 - Huge external shielding (7400 tonnes H₂O)
 - Self-shielding of scintillator
 - Purification of scintillator by distillation
 - Fast timing to reject Bi-Po backgrounds
 - Flexibility of liquids: loading-level & purification

University of Sussex

UK order for 1 tonne of Te now placed!

Simulated energy spectrum

UK Co-leading Development Group

Ongoing R&D towards future SNO+ phases...

0.3% 0.5% 1% 3% 5%

UK/EU Optical Calibration Systems Commissioning in March/14

LED-based beams to illuminate entire detector (gain, timing calib)

Narrow laser-based beams to study scattering

Lots of progress on-site

Scintillator processing plant is key

Columns

SNO+ Schedule

- Water fill has begun
- Scintillator process system completion: March 2015
- Detector filled with scintillator: September 2015

Comparing Sensitivities

Jeff Hartnell, IoP/RHUL, Apr. '14

[Input from D. Waters, S. Biller]

Conclusions

- β-decay and 0vββ address profound questions about the universe
- After a decade of building the next generation experiments... 1st wave of new results:
 - 0vββ: EXO-200, KamLAND-Zen, Gerda, NEMO-3
 - $-m_{\beta\beta}$ < 150 350 meV (90% CL)
- Much more soon to come:
 - β: KATRIN, MARE... ECHO, Project 8
 - 0vββ: SuperNEMO, SNO+, KZ-upgrades, CUORE, EXO-200, Gerda, Majorana demonstrator, NEXT
- Huge windows for discovery opening up
- Stay tuned!

University

Thank

Backup slides

HM Claim Vs EXO-200 & KamLAND-zen

HM Claim Vs EXO-200 & KamLAND-zen

HM Claim Vs EXO-200 & KamLAND-zen

Upper Plant Area

Effect of shielding

PMTs produce ~10¹¹ 2.6 MeV gammas/year

Expect 0.1 2.6 MeV gammas/year to reach iducial volume

Tracker Frame

 Preparation of cell support structure.

[Dave Waters, seminar]

Jeff Hartnell, IoP/RHUL, Apr. '14

University of Sussex

Experiment/ Isotope	lsotope mass (kg)	T _{1/2} sensitivity (yr)	<m<sub>v> sensitivity (meV)</m<sub>	Expected year of target sensitivity	Comments
EXO-200 ¹³⁶ Xe	160	3.3×10 ²⁵	110-260	2017	
nEXO ¹³⁶ Xe	5000	1.0×10 ²⁷	20-47	2027	x20 lower bkg than in EXO-200
GERDA ⁷⁶ Ge	40	1.0×10 ²⁶	120-280	2017	x10 lower bkg than GERDA-I
Ge-1t ⁷⁶ Ge	1000	2.0×10 ²⁷	27-63	2030+(?)	Further bkg reduction (x3) or better PSA
CUORE ¹³⁰ Te	200	1.0×10 ²⁶	50-130	2025	x5-10 lower bkg than currently achieved
SNO+	800	1.0×10 ²⁶	50-130	2017-20 (?)	[No data]

Why switch to ¹³⁰Te (from ¹⁵⁰Nd)?

- 34% isotopic abundance
 - 0.3% loading is 810.5 kg of ¹³⁰Te
- $2\nu\beta\beta$ half-life of $70x10^{19}$ years
 - Relative 0v/2v rate is ~50 times higher
- Good optical properties
 - Higher loading

University

• ²¹⁴Bi tagged down to 10⁻⁴ level

How does sensitivity scale?

$$(T_{1/2}^{0\nu})^{-1} = G^{0\nu} |M^{0\nu}|^2 \left(\frac{\langle m_{\nu} \rangle}{m_e}\right)^2$$

- In a background free experiment measurement of the half-life is linear with exposure (mass x time)
- For 0vββ the neutrino mass sensitivity scales as the sqrt of the half-life. Harder!
- With significant backgrounds (that scale with exposure) the half-life sensitivity scales as sqrt of exposure, and neutrino mass scales as 4th root!

