Maxim Potekhin

BNL
| Sep 03, 2013



a

- About this presentation

» We have a number of expert developers coming on board for
the next few months to support the DEFT effort

» We should not take for granted that even with current
detailed documentation all aspects of the system will be clear
to everyone involved from day one, so it may be a good idea
to revisit basic design principles and post links to
documentation

» | meant for these slides to be a “quick start” guide for anyone
involved in the project, backed up by our (pretty good) set of
TWiki pages

» ...and of course | also need to report on the status and
immediate work plan for DEFT



DEFT in a nutshell

DEFT is the front-end for the new Production System, known
as Prodsys2

It incorporates a new model, the Meta- Task, which was
designed to reflect the actual mode of operation of physics
working groups that emerged in recent years, and to provide
adequate support of their workflow

The Meta-Task is essentially a DAG representation of the
workflow, garnished with Panda-specific attributes

The other half of Prodsys2 — JEDI — picks up database records
created by DEFT and formulates job definitions for each task,
to be processed in Panda

Note that JEDI is Meta-Task-Agnostic by design. It translates
task request (DB records) into collections of jobs.



-

- DEFT components

» DEFT has two major components, named “deft-core” and
“deft-ui”

» deft-core is a collection of classes and functions that allow
the Meta-Task definitions, created by managers in XML format,
human-readable and industry standard, to be stored in RDBMS.
The other (symmetric) part of this functionality is the ability to

serialize the Meta-Task object from its RDBMS representation,
into XML

» deft-core also includes the following important functionality:
Creation of Meta-Task based on a pre-existing template
Ability to use existing Meta-Tasks as templates (the “copy” function)

Acting as a State Machine, by keeping track of the DAG state, and
controlling submissions of tasks to JEDI for further processing.
Tasks can be put on hold, cancelled and activated by managers.

Text-based monitoring and editing of attributes



a

/

)

A bit of DEFT history and philosophy

From the very beginning, DEFT was designed based solely on
the user (manager) requirements. in particular a few interviews
with Wolfgang Ehrenfeld and later with Nurcan Ozturk.There
is nothing more and nothing less in the design.

The ad hoc system now in use, based on Excel spreadsheet,
was a quick solution to the problem of handling Meta-Tasks,
and it proved difficult to scale and maintain. The essential part
of transition to Prodsys2 is that the dependencies among the
tasks forming a workflow are made explicit in XML as
opposed to being contained in a suite of obscure scripts.

DEFT is designed to have a command line interface (CLI) and a
Web Ul that are identical in terms of functionality. This is
essential from operations perspective.



DEFT Documentation

The root for all of Prodsys2 TWiki documentation is this:
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/ProdSys

The DEFT Web Ul info is here:
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/DeftGui

All documentation is updated reasonably often, and
contributing team members are certainly encouraged to add
or modify the content as required by the project

Note that the CERN-based TWiki was recently refactored,
most links appear to work but in case some don’t, please be
patient and let me know of any problems.



a

' The DEFT SVN

» All code is actively maintained in SVN.The layout of the latter
was modified in August based on suggestions from team
members.

» https://svhweb.cern.ch/trac/panda/browser/panda-deft
is the root for both deft-core and deft-ui

» What’s not in SVN: the database credentials, coded into a
Python function. Contact me for details. This will be further

improved to allow a quick switch between ADCR and INT
databases.



.

/

The DEFT database

Database schemas are being brought in line with what’s
currently the API of JEDI-a and ATKR adapter. Two main
schemas are kept up-to-date in the SVN (*.sql).

These are the tables currently used:
META
TASK
DATASET
COMM

The latter being the semaphore container for communication
with JEDI

Still missing — the job template dictionary, currently
implemented as runtime in the AKTR adapter



.

- A note on deft-core

» The code has been in place and working for a while

» Not much coding still to do, mainly expansion of the database
schemas

» Does require a good knowledge of the Production System to
move forward and maintain, can be best maintained by experts
such as Sasha



v Vv

DEFT UI: the platform

We chose Django for multiple reasons which we won’t repeat here

A development/alpha testing machine was quickly setup at CERN
after the June S&C meeting (thanks to Mr.Baranov) and the support
has been quite good

Django allows for very quick creation of template-based HTML
content delivery, and is also easily instrumented with JSON
serialization functionality. The assumption is that for a while these
two methods will co-exist in development.

A simple Django application has been in place for a while, serving
both JSON and HTML .

HTML: right now, no effort is put into making it pretty as it is
primarily a development tool allowing for quick and dirty data
visualization.



DEFT UI: basic functionality

/

» Record of our design documents
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/DeftGui#Views_Screens_Functions_and_gene

» In a nutshell, the very basic functionality is covered by:

Two monitoring pages, for tasks and Meta-Tasks, with obvious cross-links
between the two as needed

Template library: derivation of Meta-Tasks from prefab examples and
editing/adjusting their parameters as needed (w/o change of the Meta-Task
topology). Closely related to this is Meta-Task cloning functionality, which can be
co-located on the same page

Approval and Control: administrative page reserved for managers

» The above list covers the minimal but complete functionality of the
DEFT end-user and manager interface

» The good news is that it’s only 4 screens total, which is not a large
number.Works can be split nicely using Django modular organization.
We will need a reasonable navigation bar etc.

Administration of user access is included in Django, can be left for later will we finish alpha-testing.



/

D

SFT Ul: the WBS

» See detailed WBS at:
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/DeftVVbs

DEFT - Project WBS for 2013

[term Mo,
1.0.1
1.02
1.0.3
104

1.1.1
1.1.2

1.21
1272

1.3.1
1.3.2

133

ltem Title

DEFT Weh Ul Overall project coardination, design of Meta-Task Templates and caore coding
haintain up-to-date documentation

Define the code repositary structure and general code layaut
Translation of the task definition data from the old system (spreadsheets) to the Template Library
Development of DEFT-UI WES for Phase Il
Praotatype Djanga App serving task and meta-task manitoring data as JSON and HTML
Laying down basic boilerplate for the task and meta-task manitoring

HTML templates for basic testing, add J30N serialization

Django running continuausly under Apache with world-visible ports

mod_wsgi configuration of the Apache server

Establishing port scans by CERN security and getting clearance far the conduit
Task and Meta-Task Monitoring

AlaX-based data representation (dynamic tables) for Tasks and Meta-Tasks

Query'Selection Tools for Tasks and Meta-Tasks

Fenderinn nf the Mataset infarmatinn cominn frnm NEFET JIFEDT and nther snnirees

Chwner(s)
TP

M

WP

M

M

M

M

M

A5 DG
AS, DG
AS DG
DG

DG

DG

mnrs

Start
0615413
08/15/13
0815413
10/01/13
12/01/13
07m113
07/m1/13
0701313
08/15/13
0581542013
08/10/13
09413413
09/15/13
10M35M13

11601813

End

12431714
12731413
12431714
1211514
1211514
0741513
070713
0741513
09415413
02/10M13
0841513
1240113
1041513
11401413

11630813

status

In progress
In progress
In progress
Planned
Planned
Done
Done
Done

In progress
In progress
Planned
Flanned
Planned

Flanned

Planned



DEFT UI: the game plan

Dmitry and Stavro will form the core development force for the
Ul project in the Fall of 2013

Alden will contribute to specific areas of the project such as
handling of restricted pages and task control functions

WBS, as detailed as it is, is not the same as design documentation.
We have a good foundation for that in our TWiki pages which will
be soon enhanced with layouts, mockups, graphics etc. Proper
docs and communication will help the progress of the project.

The idea is to compliment the knowledge of business logic
(Sasha+Maxim) with a competent Django development team
(Stavro+Dmitry).

The Apache service will be started soon, but even before that,
anyone can contribute to the project using the development
server 3



DEFT UI: simplicity and phased
approach

» Keep it simple at every level, from basic code organization to the
Django module layout.

» Don’t worry too much about visual appearance at this stage,
prioritize functionality over graphics
» | propose a staged approach to the Ul development

Full functionality must be there in late 2013 — stage one.

We need to be able to demo the app to the managers in a month or two
This needs to be the focus (even if no full AJAX support exists in the first
stages)

This buys extra time to AJAXify/prettify/jQuerify the application in Nov-Feb
2014: stage two. Note that some work will be done in parallel with stage
one.



DEFT Ul: conclusions and outlook

Even with resources reduced as compared to our original plan, the
project can and will be done on schedule with proper planning
and minimalistic approach to the Ul

Communications are of essence, and so far have been satisfactory,
with shared and extensive documentation as well

We will definitely have a weekly phone conference for developers
(MP, DG,SG) and bi-weekly reports to be given to AK and other
managers

WBS is in place for the rest of 201 3, stage 1| WBS (2014) will be
delivered later this year.



