
Panda Workshop at UTA

DEFT

Maxim Potekhin

BNL

Sep 03, 2013 1

About this presentation

2

 We have a number of expert developers coming on board for

the next few months to support the DEFT effort

 We should not take for granted that even with current

detailed documentation all aspects of the system will be clear

to everyone involved from day one, so it may be a good idea

to revisit basic design principles and post links to

documentation

 I meant for these slides to be a “quick start” guide for anyone

involved in the project, backed up by our (pretty good) set of

TWiki pages

 …and of course I also need to report on the status and

immediate work plan for DEFT

DEFT in a nutshell

3

 DEFT is the front-end for the new Production System, known
as Prodsys2

 It incorporates a new model, the Meta-Task, which was
designed to reflect the actual mode of operation of physics
working groups that emerged in recent years, and to provide
adequate support of their workflow

 The Meta-Task is essentially a DAG representation of the
workflow, garnished with Panda-specific attributes

 The other half of Prodsys2 – JEDI – picks up database records
created by DEFT and formulates job definitions for each task,
to be processed in Panda

 Note that JEDI is Meta-Task-Agnostic by design. It translates
task request (DB records) into collections of jobs.

DEFT components

4

 DEFT has two major components, named “deft-core” and
“deft-ui”

 deft-core is a collection of classes and functions that allow
the Meta-Task definitions, created by managers in XML format,
human-readable and industry standard, to be stored in RDBMS.
The other (symmetric) part of this functionality is the ability to
serialize the Meta-Task object from its RDBMS representation,
into XML

 deft-core also includes the following important functionality:

 Creation of Meta-Task based on a pre-existing template

 Ability to use existing Meta-Tasks as templates (the “copy” function)

 Acting as a State Machine, by keeping track of the DAG state, and
controlling submissions of tasks to JEDI for further processing.
Tasks can be put on hold, cancelled and activated by managers.

 Text-based monitoring and editing of attributes

A bit of DEFT history and philosophy

5

 From the very beginning, DEFT was designed based solely on

the user (manager) requirements. in particular a few interviews

with Wolfgang Ehrenfeld and later with Nurcan Ozturk. There

is nothing more and nothing less in the design.

 The ad hoc system now in use, based on Excel spreadsheet,

was a quick solution to the problem of handling Meta-Tasks,

and it proved difficult to scale and maintain. The essential part

of transition to Prodsys2 is that the dependencies among the

tasks forming a workflow are made explicit in XML as

opposed to being contained in a suite of obscure scripts.

 DEFT is designed to have a command line interface (CLI) and a

Web UI that are identical in terms of functionality. This is

essential from operations perspective.

DEFT Documentation

6

 The root for all of Prodsys2 TWiki documentation is this:
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/ProdSys

 The DEFT Web UI info is here:
https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/DeftGui

 All documentation is updated reasonably often, and

contributing team members are certainly encouraged to add

or modify the content as required by the project

 Note that the CERN-based TWiki was recently refactored,

most links appear to work but in case some don’t, please be

patient and let me know of any problems.

The DEFT SVN

7

 All code is actively maintained in SVN. The layout of the latter

was modified in August based on suggestions from team

members.

 https://svnweb.cern.ch/trac/panda/browser/panda-deft

is the root for both deft-core and deft-ui

 What’s not in SVN: the database credentials, coded into a

Python function. Contact me for details. This will be further

improved to allow a quick switch between ADCR and INT

databases.

The DEFT database

8

 Database schemas are being brought in line with what’s
currently the API of JEDI- and ATKR adapter. Two main
schemas are kept up-to-date in the SVN (*.sql).

 These are the tables currently used:

 META

 TASK

 DATASET

 COMM

 The latter being the semaphore container for communication
with JEDI

 Still missing – the job template dictionary, currently
implemented as runtime in the AKTR adapter

A note on deft-core

9

 The code has been in place and working for a while

 Not much coding still to do, mainly expansion of the database

schemas

 Does require a good knowledge of the Production System to

move forward and maintain, can be best maintained by experts

such as Sasha

DEFT UI: the platform

10

 We chose Django for multiple reasons which we won’t repeat here

 A development/alpha testing machine was quickly setup at CERN
after the June S&C meeting (thanks to Mr.Baranov) and the support
has been quite good

 Django allows for very quick creation of template-based HTML
content delivery, and is also easily instrumented with JSON
serialization functionality. The assumption is that for a while these
two methods will co-exist in development.

 A simple Django application has been in place for a while, serving
both JSON and HTML .

 HTML: right now, no effort is put into making it pretty as it is
primarily a development tool allowing for quick and dirty data
visualization.

DEFT UI: basic functionality

11

 Record of our design documents
https://twiki.cern.ch/twiki/bin/viewauth/Atlas/DeftGui#Views_Screens_Functions_and_gene

 In a nutshell, the very basic functionality is covered by:
 Two monitoring pages, for tasks and Meta-Tasks, with obvious cross-links

between the two as needed

 Template library: derivation of Meta-Tasks from prefab examples and
editing/adjusting their parameters as needed (w/o change of the Meta-Task
topology). Closely related to this is Meta-Task cloning functionality, which can be
co-located on the same page

 Approval and Control: administrative page reserved for managers

 The above list covers the minimal but complete functionality of the
DEFT end-user and manager interface

 The good news is that it’s only 4 screens total, which is not a large
number. Works can be split nicely using Django modular organization.
We will need a reasonable navigation bar etc.

• Administration of user access is included in Django, can be left for later will we finish alpha-testing.

DEFT UI: the WBS

12

 See detailed WBS at:

https://twiki.cern.ch/twiki/bin/viewauth/AtlasComputing/DeftWbs

DEFT UI: the game plan

13

 Dmitry and Stavro will form the core development force for the
UI project in the Fall of 2013

 Alden will contribute to specific areas of the project such as
handling of restricted pages and task control functions

 WBS, as detailed as it is, is not the same as design documentation.
We have a good foundation for that in our TWiki pages which will
be soon enhanced with layouts, mockups, graphics etc. Proper
docs and communication will help the progress of the project.

 The idea is to compliment the knowledge of business logic
(Sasha+Maxim) with a competent Django development team
(Stavro+Dmitry).

 The Apache service will be started soon, but even before that,
anyone can contribute to the project using the development
server

DEFT UI: simplicity and phased

approach

14

 Keep it simple at every level, from basic code organization to the

Django module layout.

 Don’t worry too much about visual appearance at this stage,

prioritize functionality over graphics

 I propose a staged approach to the UI development

 Full functionality must be there in late 2013 – stage one.

 We need to be able to demo the app to the managers in a month or two

 This needs to be the focus (even if no full AJAX support exists in the first

stages)

 This buys extra time to AJAXify/prettify/jQuerify the application in Nov-Feb

2014: stage two. Note that some work will be done in parallel with stage

one.

DEFT UI: conclusions and outlook

15

 Even with resources reduced as compared to our original plan, the

project can and will be done on schedule with proper planning

and minimalistic approach to the UI

 Communications are of essence, and so far have been satisfactory,

with shared and extensive documentation as well

 We will definitely have a weekly phone conference for developers

(MP, DG,SG) and bi-weekly reports to be given to AK and other

managers

 WBS is in place for the rest of 2013, stage II WBS (2014) will be

delivered later this year.

