
Testing PanDA at ORNL

Danila Oleynik
University of Texas at Arlington / JINR

PanDA Workshop @ UTA

3-4 of September 2013

Outline

• Current PanDA implementation

• HPC at ORNL architecture, specialty

• PanDA architecture for Kraken, Titan

• PanDA Pilot modification to cope HPC

• SAGA API

• Initial testing

• In progress: Pilot - SAGA integration.

PanDA workshop @ UTA 2

Current PanDA implementation

• One Pilot per WN

• Pilot executes on same node as job

• SW distribution through CVMFS

APF

PanDA

Jobs (HTTPS)

Data

Storage

WN

ATLAS SW

(CVMFS)

Pilot

Jobs (HTTPS)

Data

WN

ATLAS SW

(CVMFS)

Pilot

PanDA workshop @ UTA 3

HPC at ORNL architecture, specialty

• Kraken Cray XT5
• 9408 nodes

• node: 12 core, 16 GB RAM

• Titan Cray XT7
• 18,688 nodes

• node: 16 core, 32 + 6 GB RAM (2GB per core)

• One-Time Password Authentication

• Parallel file system shared between nodes.

• Extremely limited access to worker nodes

• Internal job management tool: PBS/TORQUE

• One job occupy minimum one node (12-16 cores)

• Limitation of number of jobs in scheduler for one user: slots
limitation

• Own compilers, interpreters, libraries

PanDA workshop @ UTA 4

PanDA architecture for Kraken, Titan

• Pilot(s) executes on HPC interactive node

• Pilot interact with local job scheduler to manage job

• Number of executing pilots should be equal or less of
number of available slots in local scheduler

HPC

Interactive node

Job
scheduler

Multicore WN

Multicore WN

Multicore WN

APF

Pilot
[1:n]

Multicore WN

Multicore WN

Pilot
[1:n]
Pilot
[1:n]

Jobs

Shared FS / HPC Scratch

PanDA@CERN

Jobs (HTTPS)

Data (gridFTP)

Storage@BNL

ATLAS SW

Repository

SW Deployment
(Special job)

VOMS

PanDA workshop @ UTA 5

PanDA Pilot modification to cope HPC

• Main modification of Pilot for working with HPC, is

changing in part of Job executing process (runJob class)

• Environment validation procedures should be checked.

• Stage In/Stage Out procedures should be checked.

PanDA workshop @ UTA 6

SAGA API

• SAGA (Simple API for Grid Applications) defines a high-level

interface to the most commonly used distributed computing

functionality. SAGA provides an access-layer and mechanisms

for distributed infrastructure components like job schedulers,

file transfer and resource provisioning services

• Behind the API facade, SAGA-Python implements a flexible

adaptor architecture. Adaptors are dynamically loadable

modules that interface the API with different middleware

systems and services.

• Developed and intensive maintained by RADICAL Research at

The Cloud and Autonomic Computing Center, Rutgers

University.

• http://saga-project.github.io

PanDA workshop @ UTA 7

http://saga-project.github.io
http://saga-project.github.io
http://saga-project.github.io

SAGA API. Supported Middleware

• Job Submission Systems

• SSH and GSISSH

• Condor and Condor-G

• PBS/Torque

• Sun Grid Engine

• SLURM

• File / Data Management

• SFTP/GSIFTP

• HTTP/HTTPS

• Resource Management / Clouds

• EC2 (libcloud)

PanDA workshop @ UTA 8

SAGA API. Typical schema

 Comput ing Resource:

Condor and Condor-G,

PBS and Torque,

Sun Grid Engine,

SLURM,

Remote host (SSH)

Applicat ion

Comput ing

resource

Adaptor

Data t ransfer

interface

Stage in/ Stage Out

Job

Data

PanDA workshop @ UTA 9

SAGA API. Other features

• Configuration and logging

• Arguments and environment setup for jobs execution in

batch processing systems

• Different security contexts:

• UserPass

• SSH

• X.509

• MyProxy

• EC2

• EC2_KEYPAIR

PanDA workshop @ UTA 10

Initial testing

• Initial testing was done for proving that PanDA
components will be able to run in HPC environment on
interactive nodes

• APF and Pilot was successfully started on HPC

• Outbound https connection was confirmed, so pilots can
communicate with PanDA server

• SAGA API was successfully tested on HPC for managing
jobs in local job scheduler

• Due to interactive node and worker nodes use shared file-
system, we did not need any special internal data-
management process

• Connection from Titan FE to Federated ATLAS Xrootd is
verified

PanDA workshop @ UTA 11

Initial testing

HPC

Interactive node

Job
scheduler

Multicore WN

Multicore WN

Multicore WN

APF

Multicore WN

Multicore WN

Pilot

Jobs

Shared FS / HPC Scratch

PanDA@CERN

Jobs (HTTPS)

Data (gridFTP)

Storage@BNL

ATLAS SW

Repository

SW Deployment
(Special job)

x509

runJobHPC

(skeleton)

Payload

PanDA workshop @ UTA 12

In progress: Pilot modification

• Though Pilot was run on HPC and communication with

PanDA server was established, procedures for checking

environment for specific experiment for the moment fails.

• In process modification of this procedures

• Next steps:

• Validation of stage in/stage out procedures

• Validation of simple job execution on HPC head node

• Development of runJodHPC class, to manage job in PBS/Torque

job scheduler.

PanDA workshop @ UTA 13

