# **Cosmological constraints on Dark Radiation**



# Hiranya V. Peiris

University College London





European Research Council

#### **Credits**



Stephen FeeneyLicia VerdeDaniel MortlockBoris LeistedtImperialBarcelona / OsloImperialUCL

arxiv: I 302.0014 (JCAP), arxiv: I 307.2904 (JCAP), Leistedt et al. 2014 (to be submitted)



# Outline

Focus on dark radiation interpreted as neutrino physics.

Focus on cosmological constraints only.

neutrinos in cosmology

• extra neutrinos? .... tension with local H0 measurement

• massive sterile neutrinos? .... tension with cluster constraints

## What is a neutrino? (in cosmology)

- Behaves like radiation at T~eV (recombination/decoupling)
- Eventually (possibly) becomes non-relativistic, behaves as matter
- Small interactions (not perfect fluid)
- High velocity dispersion ("hot")



Image: LBNE/ Fermilab

## Neutrinos in cosmology



- Neutrinos in equilibrium with primordial plasma through weak interaction. Decouple at ~I MeV (2 sec, cf. CMB at 380,000 yrs)
   T ~ I eV at matter-radiation equality, T ~ 0.26 eV at recombination
- Relativistic at decoupling  $(m_{\nu} \ll T_{\nu}) \rightarrow$  large velocity dispersions (1 eV ~ 100 km/s)
- 600 billion  $v/cm^3$ /sec from the sun, 100  $v/cm^3$  from the CvB

Image:WMAP/ NASA

#### **Cosmic neutrino background**

- Neutrinos almost decoupled by e+e- annihilation.
   some high-energy v slightly reheated
- $T_{\nu}$  boost equivalent to increasing  $N_{\nu}$  = 3 to N<sub>eff</sub> = 3.046

$$\rho_{\nu} = N_{\rm eff} \frac{7\pi^2}{120} T_{\nu}^4$$

• Have a cosmic neutrino background today at temperature

$$T_{\nu} = \left(\frac{4}{11}\right)^{1/3} T_{\gamma} \sim 1.945 \,\mathrm{K}$$

• For massive neutrinos, gives physical energy density

$$\Omega_{\nu}h^2 = \frac{\sum_i \alpha_i m_i}{94.07 \,\mathrm{eV}}$$

### Neutrino observables in cosmology



## BBN (T~MeV)

varying  $N_{\text{eff}}$  changes neutron freezeout and hence  $Y_{\text{He}}$  &  $Y_{\text{D}}$ 



#### CMB + LSS (T<eV)

effects from both  $N_{\text{eff}}$  and mass on both background and clustering

#### Local measurements of $H_0$

N<sub>eff</sub> increases expansion rate at all redshifts

## **Neutrinos beyond the Standard Model**

•Standard Model: 3 flavours —  $v_e$ ,  $v_\mu$  and  $v_\tau$  — all massless.

Particle physics experiments → standard picture incomplete.
 solar, atmospheric and terrestrial ∨ change flavour

•Oscillations require neutrino mass

flavour eigenstates  $\neq$  mass eigenstates

flavours can change as V propagate

•What about number?





# Outline

Focus on dark radiation interpreted as neutrino physics.

Focus on cosmological constraints only.

neutrinos in cosmology

- extra neutrinos? .... tension with local H0 measurement
- massive sterile neutrinos? .... tension with cluster constraints

### What do we measure in the (low I) CMB?

Measure CMB acoustic peak locations and heights

•Positions constrain angular scale of sound horizon,  $\theta_s$ 

•Relative heights  $\rightarrow$  redshift of matter/radiation equality, I +  $z_{eq}$  and baryon density,  $\Omega_b h^2$ 



#### How do massless neutrinos affect CMB?

•Additional massless neutrinos means -extra radiation -boosted expansion rate:  $H^2 \simeq \frac{8\pi G}{3} (\rho_{\gamma} + \rho_{\nu})$  (rad. dom.) •Distance acoustic waves travel  $\propto t \propto H^{-1}$  assuming  $\theta_{s}$ ,  $z_{eq}$ , •Distance photons diffuse  $\propto t^{1/2} \propto H^{-1/2}$ 

 $\begin{array}{l} \mbox{Main effect: increasing $N_{eff}$} \\ \mbox{increases Silk Damping} \\ \mbox{scale (for fixed $\theta_{s}$)} \end{array}$ 



#### Image: Hou et al (2011)

#### How do massless neutrinos affect CMB?



Small phase shift too: neutrinos free-stream faster (at c) than sound speed of baryon-photon plasma ( $c/\sqrt{3}$ ) [Bashinsky and Seljak 2002]

Animation: Stephen Feeney

### **Cosmological probes of N**eff

#### •CMB damping tail

increasing N<sub>eff</sub> damps small-scale power

- •H<sub>0</sub> & H(z) both increase with  $N_{\text{eff}}$
- •BBN: measurements of light-element abundances varying N<sub>eff</sub> changes neutron freezeout and hence Y<sub>He</sub> & Y<sub>D</sub>
- •BAO not directly helpful with N<sub>eff</sub> (Hou et al. [2011]) can help constrain other params

#### CMB lensing

better for neutrino mass

#### **Extra neutrinos?**

•Hint of sterile neutrino(s) from short-baseline oscillation experiments? (e.g. Gninenko [2011]) neutral leptons insensitive weak interactions, only interaction gravitational; LSND/MiniBooNE hints at 1-2 sterile neutrinos with ~eV masses

- •Cosmological tests hint at >3 species
- •Focus on (effective) number N<sub>eff</sub>
- •Many analyses indicate N<sub>eff</sub> > 3.046 at 1-2  $\sigma$

ACT (Dunkley et al. [2010]) "weirdest"
not independent, of course!



#### Riemer-Sørensen et al. (2013)

#### Degeneracies

• N<sub>eff</sub> degenerate with dark matter density, H<sub>0</sub>, Y<sub>He</sub>...



•Plots show WMAP (b&w) + SPT (blue) + BAO (green) or  $H_0$  (red)

•Degeneracy reduced but not broken by extra data

Feeney, HVP, Verde (2013)

#### Degeneracies

•Degeneracy cut at low N<sub>eff</sub>

neutrino perturbations: Bashinsky & Seljak [2004], Trotta & Melchiorri [2008]...

•Need some neutrinos (damping and anisotropic stress) to explain peak heights and locations ... but extends to high N<sub>eff</sub> can tweak e.g.  $\Omega_c h^2$ ,  $\Omega_b h^2$ ,  $n_s$  to mimic effects

•Mean of marginalized N<sub>eff</sub> posterior : high!

•Easy to generate  $\sim I \sigma$  "hints"; adopted value of  $H_0$  matters!



Feeney, HVP, Verde (2013)

## Reminder: parameter estimation vs model comparison



**Evidence**: model-averaged likelihood

Bayes' theorem: competing models succeed or fail based on their predictivity, not their simplicity

### Statistical framework: model selection

•Fundamental question: is Universe **ACDM** or **ACDM+N**eff?

Parameter posteriors insufficient:
 -only tells us most likely parameter value in single model
 -hard to interpret cf. long degeneracies

Need to calculate model posteriors

 $\frac{\Pr(\Lambda \text{CDM}|\text{d})}{\Pr(\Lambda \text{CDM} + N_{\text{eff}}|\text{d})} = \frac{\Pr(\Lambda \text{CDM})}{\Pr(\Lambda \text{CDM} + N_{\text{eff}})} \frac{\Pr(\text{d}|\Lambda \text{CDM})}{\Pr(\text{d}|\Lambda \text{CDM} + N_{\text{eff}})}$   $\uparrow \text{prior probability} \quad \text{evidence ratio}$ 

## **Bayesian model selection**

•Must calculate model-averaged likelihood, aka Evidence

$$\Pr(\mathbf{d}|M) = \int d\theta \Pr(\theta|M) \Pr(\mathbf{d}|\theta, M)$$

•If models nested can use Savage-Dickey Density Ratio (SDDR) Dickey (1971), see also Trotta (2007), Verde, Feeney, Mortlock, HVP (2013)

•Just need ratio of posterior and prior at nested parameter value, e.g.,  $\Lambda CDM = (\Lambda CDM + N_{eff})|_{N_{eff}=3.046}$  so can do:

$$\frac{\Pr(\mathbf{d}|\Lambda \text{CDM})}{\Pr(\mathbf{d}|\Lambda \text{CDM} + N_{\text{eff}})} = \left. \frac{\Pr(N_{\text{eff}}|\mathbf{d},\Lambda \text{CDM} + N_{\text{eff}})}{\Pr(N_{\text{eff}}|\Lambda \text{CDM} + N_{\text{eff}})} \right|_{N_{\text{eff}}=3.046}$$

•Can compute from MCMC.

## Evidence (pre-Planck)



No evidence for additional neutrinos! odds 3:1 in favour of  $\Lambda$ CDM.

Feeney, HVP, Verde (2013)

## What if we lack physical priors?

•Are hints present in likelihood?

•Use profile likelihood ratio (PLR, Wilks [1938]) ratio of conditional to unconditional maximum likelihoods

$$PLR(N_{eff}^*) = \frac{\max\left[\Pr(d|\theta_{\Lambda CDM}, N_{eff} = N_{eff}^*)\right]}{\max\left[\Pr(d|\theta_{\Lambda CDM}, N_{eff})\right]}$$

•Prior-"independent"

 Max likelihood ~ upper bound on evidence for "just-so" model Verde, Feeney, Mortlock, HVP (2013)

• If PLR peak away from  $N_{\text{eff}}$  = 3.046: evidence for deviation

#### Profile likelihoods (pre-Planck)



No preference for additional neutrinos!

Feeney, HVP, Verde (2013)

#### Planck + tension with local H<sub>0</sub>



•Posterior for N<sub>eff</sub> peaks high. Revived interest in resolving tension via N<sub>eff</sub> [e.g., *Di Valentino, Melchiorri, Mena* 2013]

Figure: Planck XVI (2013)

## Evidence (post-Planck)

![](_page_23_Figure_1.jpeg)

No evidence for additional neutrinos! increased odds 6:1 in favour of  $\Lambda CDM$ .

Verde, Feeney, Mortlock, HVP (2013)

Profile likelihoods (post-Planck)

![](_page_24_Figure_1.jpeg)

No preference for additional neutrinos! Cannot distinguish N<sub>eff</sub> ~3 and 4. Verde, Feeney, Mortlock, HVP (2013)

#### What could end the debate?

Planck polarisation

-polarisation peaks more prominent (Bashinsky & Seljak 2004)

-pin down phase shift: must be neutrinos  $(\Delta N_{\rm eff} \sim 0.18)$ 

Precise local measurements of H<sub>0</sub> & age of Universe

-see Verde, Jimenez & Feeney (2013)

-ages of low-metallicity stars (Bond et al. 2013)

-investigation of systematics in  $H_0$ 

![](_page_25_Figure_8.jpeg)

Verde, Protopapas & Jimenez (2013)

![](_page_26_Picture_0.jpeg)

# Outline

Focus on dark radiation interpreted as neutrino physics.

Focus on cosmological constraints only.

- neutrinos in cosmology
- extra neutrinos? .... tension with local H0 measurement
- massive sterile neutrinos?

neutral leptons insensitive weak interactions, only interaction gravitational; LSND/MiniBooNE hints at 1-2 sterile neutrinos with ~eV masses .... tension with cluster constraints

#### Massive sterile neutrinos?!

Recent papers prefer (~3σ) one extra sterile, massive neutrino Wyman et al. (PRL, 2013), Hamann & Hasenkamp (JCAP, 2013), Battye & Moss (PRL, 2013)

![](_page_27_Figure_2.jpeg)

Datasets used (clusters,  $H_0$ , cosmic shear) in tension with Planck+BAO in  $\Lambda$ CDM.

**HST H<sub>0</sub> high:** wants high  $\sigma_8$ , low m<sub>v</sub>

**Clusters**  $\sigma_8$  low: wants low  $H_0$ , high  $m_v$ 

Figure:Wyman et al (2013)

#### Impact of N<sub>eff</sub> on matter P(k)

![](_page_28_Figure_1.jpeg)

![](_page_29_Figure_0.jpeg)

#### Impact of massive neutrino on matter P(k)

![](_page_30_Figure_1.jpeg)

#### Impact of massive sterile neutrino

![](_page_31_Figure_1.jpeg)

#### Adding parameters for concordance

![](_page_32_Figure_1.jpeg)

Efstathiou, Bond, White (1992)

#### Adding parameters for concordance

![](_page_33_Figure_1.jpeg)

Bahcall, Ostriker, Perlmutter, Steinhardt (1999)

![](_page_34_Figure_1.jpeg)

•Non-zero sterile neutrino mass only favoured due to:

-tension between CMB and clusters (Planck SZ, X-ray) in  $\sigma_8-\Omega_m$  plane

-degeneracy between  $\sigma_8$  & neutrino mass.

Leistedt, HVP, Verde (to be submitted)

- X-ray luminosity (Mantz+ 2008)
- X-ray cross CMB (Hajian+ 2013)
- SPTSZ+Xray (Benson+ 2011)
- Planck SZ (Planck C. 2013)
- MaxBCG richness (Rozo+ 2009)
- CFHTLens (Heymans+ 2013)
- X-ray masses (Vikhlinin+ 2008)
- SDSSDR7+MaxBCG (Tinker+ 2012)
- • CFHTLens (Kilbinger+ 2013)
- X-ray temperature (Henry+ 2008)

![](_page_35_Figure_11.jpeg)

![](_page_36_Figure_1.jpeg)

— CMB+BAO (ΛCDM+neutrinos)

HST PlaSZ

Xray

— CMB+Lensing+BAO+Clustering (ΛCDM+neutrinos)

![](_page_36_Figure_5.jpeg)

Bayesian Evidence does not support massive sterile neutrino model even when combining conflicted datasets

Leistedt, HVP, Verde (to be submitted)

*Planck*: r<0.11 (95% CL); BICEP2: r~0.2

• "Neutrinos help reconcile Planck measurements with both Early and Local Universe" [Dvorkin, Wyman, Rudd, Hu 2014] Evidence for massive sterile neutrinos increased by BICEP2?

•Conclusion premature; datasets remain in tension Leistedt, HVP, Verde (undergoing Planck EB review)

**BUT!** If r~0.2, B-mode spectrum can constrain N<sub>eff</sub>!

Zhao, Zhang, Xia (2009)

- CMB+Lensing+BAO+Clustering

CMB+BAO+Xray+HST

CMB+BAO+Xray+HST+BICEP

![](_page_37_Figure_8.jpeg)

## Conclusions

- Tensions between CMB+BAO++ and [local measurements of H0 | SZ, X-ray cluster measurements] not resolved by new concordance model based on massive sterile neutrinos.
- Current data cannot distinguish between N<sub>eff</sub> ~ 3 and 4.
- Robust data combinations give tight limits <0.3 for sum of (active) sterile) neutrino masses.
- Future is in combined probes; systematics are key.

![](_page_38_Picture_5.jpeg)