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good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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• Reconstruct the 3-point function of the initial conditions
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f loc

NL

= 2.7± 5.8 (Planck ’13) f loc

NL

⌧ 1 ? f loc

NL

⇠ few ?�

fNL ⇠ 0



Numerical goals
• Line-of-sight integral:• Boltzmann code:

Evolve cosmological perturbations up to 
second order by solving Boltzmann and 
Einstein equations

Gij = 8⇡G
X

I

T (I)
ij&

dfI
d⌘

= CI [fI ] , I = �, ⌫, b,CDM

) ⇥(2),�(2), (2), . . .

Compute CMB bispectrum from second order 
effects, by integrating the photon temperature 
along the line of sight

⇥(2)(⌘0, n̂) =

Z ⌘0

0
d⌘S

(2)(⌘, ~x(⌘), n̂)

h⇥(2)
l1m1

⇥(1)
l2m2

⇥(1)
l3m3

i / h⇣⇣⇣⇣i
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Bartolo, Matarrese, Riotto ’04, ’06; Bernardeau, Pitrou, Uzan ’08; Pitrou ’08 (CMBquick2); Bartolo, Riotto ’08; 
Khatri, Wandelt ’08; Senatore, Tassev, Zaldarriaga ’08; Nitta et al. ’09, Boubekeur, Creminelli, D’Amico, Norena, 
’09, Beneke and Fidler ’10,...
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• CosmoLib2nd - Huang, Vernizzi ‘12

• SONG - Pettinari, Fidler, Chrittenden, Koyama, Wands ‘13

• Su, Lim, Shellard ‘12

Current numerical codes:

★ No license, parallelizable, full-sky

★ Mathematica, flat-sky, …
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• Boltzmann code:
Evolve cosmological perturbations up to 
second order by solving Boltzmann and 
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friend 1

�kL

ClS

Consistency relation

LSS

Creminelli, Zaldarriaga ’04

friend 2

Local physics is identical in Hubble patches that differ only by super-horizon modes: two 
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good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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good indication that no spurious NG features are present in the
actual data set when compared to our simulations. It should be
noted that we found a similarly good level of agreement between
estimators for the non-primordial shapes of point sources and
ISW-lensing, although we chose not to present those results here
in order to focus on the primordial shapes. Finally, regarding the
wavelet pipeline, the lower weight correlation and suboptimal
error bars produce an expected larger scatter when compared to
the other estimators. Nonetheless, the level of agreement is still
of order 1�, which is quite acceptable for consistency checks of
the optimal results. Again, this MC expectation agrees with what
we see in our results on the real data.

7. Results

For our analysis of Planck data we considered foreground-
cleaned maps obtained with the four component separation
methods SMICA, NILC, SEVEM, and C-R. For each map, fNL
amplitudes for the local, equilateral, and orthogonal primordial
shapes have been measured using three (four for SMICA) bispec-
trum estimators described in Sect. 3. The results can be found
in Sect. 7.1. These estimators, as explained earlier, basically use
an expansion of the theoretical bispectrum templates in di↵erent
domains, and truncate the expansion when a high level of corre-
lation with the primordial templates is achieved. These accurate
decompositions, which are highly correlated with each other, are
then matched to the data in order to extract fNL. The di↵erent
expansions are all di↵erent implementations of the maximum-
likelihood estimator given in Eq. (32). So the final estimates are
all expected to be optimal, and measure fNL from nearly identi-
cal fitting templates. As discussed and tested in detail on simu-
lations in Sect. 6, central fNL values from di↵erent methods are
expected to be consistent with each other within about 0.3� fNL .
It is then clear that comparing outputs from both di↵erent esti-
mators and di↵erent component separation methods, as we do,
allows for stringent internal consistency checks and improved
robustness of the final fNL results.

In addition, the binned and modal techniques produce shape-
independent full bispectrum reconstructions in their own di↵er-
ent domains. These reconstructions, discussed in Sect. 7.2, com-
plement the standard fNL measurements in an important way,
since they allow detection of possible NG features in the three-
point function of the data that do not correlate significantly with
the standard primordial shapes. This advantage is shared by the
skew-C` method, also applied to the data. A detection of such
features would either produce a warning that some residual spu-
rious NG e↵ects are still present in the data or provide an in-
teresting hint of “non-standard” primordial NG that is not cap-
tured by the local, equilateral and orthogonal shapes. Additional
constraints for a broad range of specific models are provided
in Sect. 7.3 (see also Sect. 2.3). In Sect. 7.4 we present the
constraints on local NG obtained with Minkowski Functionals.
Finally, in Sect. 7.5 we present our CMB trispectrum results.

7.1. Constraints on local, equilateral and orthogonal fNL

Our goal here is to investigate the standard separable local, equi-
lateral and orthogonal templates used e.g., in previous WMAP
analyses (see e.g., Bennett et al. 2012). When using the modal,
binned, or wavelet estimator, these theoretical templates are ex-
panded approximately (albeit very accurately) using the relevant
basis functions or bins. On the other hand, the KSW estimator by
construction works with the exact templates and, for this reason,
it is chosen as the baseline to provide the final fNL results for

Table 8. Results for the fNL parameters of the primordial local,
equilateral, and orthogonal shapes, determined by the KSW es-
timator from the SMICA foreground-cleaned map. Both indepen-
dent single-shape results and results marginalized over the point
source bispectrum and with the ISW-lensing bias subtracted are
reported; error bars are 68% CL .

Independent ISW-lensing subtracted

KSW KSW

SMICA

Local . . . . . . . . . 9.8 ± 5.8 2.7 ± 5.8

Equilateral . . . . . �37 ± 75 �42 ± 75

Orthogonal . . . . . �46 ± 39 �25 ± 39

the standard shapes (local, equilateral, orthogonal), see Table 8.
However, both the binned and modal estimators achieve opti-
mal performance and an extremely high correlation for the stan-
dard templates (⇠ 99%), so they are statistically equivalent to
KSW, as demonstrated in the previous section. This means that
we can achieve a remarkable level of cross-validation for our
Planck NG results. We will be able to present consistent con-
straints for the local, equilateral and orthogonal models for all
four Planck foreground-cleaned maps, using three independent
optimal estimators (refer to Table 9). Regarding component sep-
aration methods, we adopt the SMICA map as the default for the
final KSW results given its preferred status among foreground-
separation techniques in Planck Collaboration XII (2013). The
other component separation maps will be used for important
cross-validation of our results and to evaluate potential sensi-
tivity to foreground residuals.

All the results presented in this Section were obtained using
the union mask U73, which leaves 73% of the sky unmasked.
The mask is the union of the confidence masks of the four di↵er-
ent component separation methods, where each confidence mask
defines the region where the corresponding CMB cleaning is
trusted (see Planck Collaboration XII 2013). As will be shown in
Sect. 8.2, results are robust to changes that make the mask larger,
but choosing a significantly smaller mask would leave some NG
foreground contamination. For the linear term CMB and noise
calibration, and error bar determination, we used sets of realistic
FFP6 maps that include all steps of data processing, and have
realistic noise and beam properties (Planck Collaboration ES
2013). The simulations were also lensed using the Lenspix al-
gorithm and filtered through the component separation pipelines.

In Table 8 we show results for the combination of the KSW
estimator and the SMICA map, at a resolution of `max = 2500.
We present both “independent” single-shape results and “ISW-
lensing subtracted” ones. The former are obtained by directly
fitting primordial templates to the data. For the latter, two ad-
ditional operations have been performed. In the first place, as
the name indicates, they have been corrected by subtracting
the bias due to the correlation of the primordial bispectra to
the late-time ISW-lensing contribution (Mangilli & Verde 2009;
Junk & Komatsu 2012; Hanson et al. 2009b, see Sect. 5.2). In
addition, a joint fit of the primordial shape with the (Poissonian)
point source bispectrum amplitude extracted from the data
has been performed on the results marked “ISW-lensing sub-
tracted”.10 Since the ISW-lensing bispectrum is peaked on

10 More precisely, in the subtracted ISW-lensing results the equilateral
and orthogonal primordial shapes are also fitted jointly, although this
has a nearly negligible impact on the final result because the two shapes
are by construction nearly perfectly uncorrelated.
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• Second order effects are finally under control!

• Consistent separation between second-order sources at recombination from better known 
ISW-lensing correlation

• Small S/N but signal likely to be detectable with lmax~3000 and including polarization



Conclusion

• CosmoLib2nd: full calculation, on all scales, of bispectrum from nonlinear effects at 
recombination

• Perfect agreement with squeezed limit formula and previous literature. Squeezed limit 
formula can be practically employed to compute the S/N. 

• Small contamination to local primordial non-Gaussianity for Planck but sizeable on local 
primordial signal:

• Second order effects are finally under control!

• Consistent separation between second-order sources at recombination from better known 
ISW-lensing correlation

• Small S/N but signal likely to be detectable with lmax~3000 and including polarization

Let’s include them in the next analysis!



The shape of the bispectrum

with Z. Huang, ’12

l3 = 1720

Senatore, Tassev, Zaldarriaga, ’08 (l>100)

f loc

NL

= 1
• Signal-to-noise density:

l2/33 bl1l2l3/(Cl1Cl2Cl3)
1/2

with l1  l2  l3



Comparison with SONG
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Figure 1: Numerical temperature bispectra versus the squeezed-limit approximation in
Eq. (5.11) for a WMAP7 cosmology, where `1 = 6 and `2 = `3 = ` . We normalise the curves
with respect to the ultra-squeezed limit for a local-type bispectrum with f

NL

= 1 [16, 17], so
that the primordial curve would appear as a constant horizontal line with amplitude close to
unity.

We obtain the Fisher matrix elements in Eq. (5.12) by interpolating the bispectra on a
mesh [66]. This allows us to compute the numerically expensive second-order bispectrum for
a small number of configurations, typically O (100) per `-direction, and still estimate the sum
in Eq. (5.12) to high accuracy. This is a huge speed improvement over existing techniques,
even when considering the simple separable bispectra. As an example, we can compute the
signal-to-noise of the equilateral model for a given cosmology with ⇠ 1% accuracy in the
matter of seconds on a quad-core machine (see Section 7).

6 Results

We present results for the intrinsic bispectrum considering three different combinations of line
of sight sources. The first considered bispectrum (BR) includes only sources located on the
surface of last scattering, that is the |̇| sources in Eq. (4.3) plus the second-order Sachs-Wolfe
effect, 4 |̇| , which only contributes to the monopole. The second (BR+Z) also includes the
redshift term of QL, that is 4 (n

i

@

i

 � ˙

�)�. This is computed using ˜

� and it is the same
bispectrum presented in Huang and Vernizzi (2012) [45]. Finally, BR+Z+M consists of the
above sources plus all the terms in M. One of such terms gives rise to the Rees-Sciama effect
[31, 67–69], which is given by 4 (

˙

 +

˙

�). The latter bispectrum contains all terms in the
Boltzmann equation but the time-delay and lensing contributions, and is therefore our most
complete bispectrum.

We compute the contamination f

intr

NL

induced by the intrinsic bispectra for three models
of primordial non-Gaussianity: local, equilateral and orthogonal. Our results are shown in
Table 1, where we assume an ideal experiment with `

max

= 2000.
The most striking feature of Table 1 is the difference between the B

R and B

R+Z bispec-
tra, with the former yielding a larger f

NL

contamination. This is a quantitative confirmation
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