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Intrinsic nonlinear effects

Even in the absence of primordial non-Gaussianity, <CE1 CE2 CE3> = 0, the CMB is non-Gaussian!
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2nd-order effects induce non-Gaussianity:

* late time: ISW-lensing; Goldberg, Spergel, '99 11\%(3 = 7.1 Detected by Planck!
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* at recombination: 2"9-order perturbations in the fluid + GR nonlinearities.
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Why do we care?

* Reconstruct the 3-point function of the initial conditions

fE=27+£58  (Planck1d) = AHE<K1? /L ~few ?

 Removing contamination is important to improve present constraints on primordial NG

« BICEP2r=0.2 =  Most probably single-field slow-roll inflation = fn1, ~ 0

* Nonlinearities there for sure, if our picture of the universe is consistent




Numerical goals

* Boltzmann code: * Line-of-sight integral:
Evolve cosmological perturbations up to Compute CMB bispectrum from second order
second order by solving Boltzmann and effects, by integrating the photon temperature
Einstein equations along the line of sight
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Based on many contributions

Bartolo, Matarrese, Riotto 04, ’06; Bernardeau, Pitrou, Uzan ’08; Pitrou ’08 (CMBquick?2); Bartolo, Riotto ’08;
Khatri, Wandelt ’08; Senatore, Tassev, Zaldarriaga ’08; Nitta et al. ’09, Boubekeur, Creminelli, D’Amico, Norena,
09, Beneke and Fidler ’10,...

and previous codes

 Bernardeau, Pitrou, Uzan 08 (CMBquick?2)
- Khatri, Wandelt '08 (perturbed rec.)
- Senatore, Tassev, Zaldarriaga ’08 (perturbed recombination)




Numerical goals

 Boltzmann code:

Evolve cosmological perturbations up to
second order by solving Boltzmann and
Einstein equations

d
di; =Cilfrl, I=~,v,b,CDM
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Current numerical codes:

» CosmoLib2" - Huang, Vernizzi ‘12

* Line-of-sight integral:
Compute CMB bispectrum from second order

effects, by integrating the photon temperature
along the line of sight

e
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* No license, parallelizable, full-sky

* SONG - Pettinari, Fidler, Chrittenden, Koyama, Wands ‘13

« Su, Lim, Shellard ‘12

* Mathematica, flat-sky, ...
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Numerical goals

 Boltzmann code:

Evolve cosmological perturbations up to
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e Line-of-sight integral:
Compute CMB bispectrum from second order

effects, by integrating the photon temperature
along the line of sight
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Need to include geodesic deviation: ensures that the final result is gauge invariant

Current numerical codes:

» CosmoLib2" - Huang, Vernizzi ‘12

% Consistently includes lensing and time delay

« SONG - Pettinari, Fidler, Chrittenden, Koyama, Wands ‘13

« Su, Lim, Shellard ‘12



Line-of-sight treatment

Free-streaming
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integrated effects

collision term
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Line-of-sight treatment

Tight-coupling Free-streaming
Few multipoles develop
| (ol 2
NeoT > H NeoT <K H
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* Photon temperature equation (second order):
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d77 geodesic deviation

collision term

= —(7 + 07)F

integrated effects



Line-of-sight treatment

Free-streaming
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Line-of-sight treatment

~Tight-coupling Free-streaming
TRV gy multipoles develop
(o< 2
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* Photon temperature equation (second order):
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geodesic deviation

o integrated effects
collision term
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Long wavelength temperature mode < Rescaling of the background
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Line-of-sight treatment

- Tight-coupling Free-streaming
~ Few multipoles develop
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* Photon temperature equation (second order):
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d77 geodesic deviation collision term
integrated effects

e Change of variable - identify boundary term:
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local redefinition
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Line-of-sight treatment

B © Tight-coupling Free-streaming
" Few multipoles develop
(&< 2
NeoT > H NeoT <K H : .
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* Photon temperature equation (second order):

d - | d . d

— (O +®) - (1+Dn'0; + 0,ivy—)E = (7 +67)(1 + Dn'0; + 0, — ) F

d77 integrated effects dn’ collision term dn’

e Change of variable - identify boundary term:

A ~ A 1 A ~ 7 ~ A A
Ogon(1) = Ot () + 5 [Oobs (7)) +D (110, 7)1 9Ot (1) + Drs1 (10, ) Dps O ()

local redefinition time delay lensing

* Neglecting time delay (suppressed by 7). /770 ):

biy1515 = (Cllczg + Ly,1,1,CL Y Cly + perms) + by 1,14

Ll1l2l3 = [ll(ll —+ 1) —+ 12(12 —+ 1) — 13(13 —+ 1)] /2



CO n S | Sten Cy relat | O n Creminelli, Zaldarriaga '04

with Creminelli, Pitrou '11

Single-field inflation: 1 clock, e.g. everything is determined by T.

friend 1 friend 2

L L

kr
v

long wavelength mode

Local physics is identical in Hubble patches that differ only by super-horizon modes: two
observers in different places on LSS will see exactly the same CMB anisotropies (at given T).

Coordinate trasformation:

(G, CroClpy) = —(ns = D) Pc(kr)Pe(ks)  — (GGl ) =0
Maldacena ’02



Projection effects

The long mode is inside the horizon and | can compare different patches. Will see a modulation of
the 2-point function due to large scale T-:

Transverse rescaling of spatial coords = rescaling of angles: C} — C} 4 ((n - V;C))

* Squeezed limit consistency relation:

~ 1
— bl1l2l3 — _§CZC (Cl2

dIn(l3C,,) o dln(l%C’lg)) 1 < g, 3
dinl, % dlnls I, < Ly ~ 110

with Creminelli, Pitrou ’11; Bartolo, Matarrese, Riotto; 11, Lewis 12, Pajer,
Schmidt, Zaldarriaga ‘13

This relation can be used as consistency check of Boltzmann codes based on a physical limit



The squeezed |limit

Planck params. without reion.
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» Comparison with the analytic formula:
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The squeezed |limit

oo ool .
100
 Comparison with the

d ln(lgCZQ)
dIn 12

d ln(l?%ClS)
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Observab ility and contamination
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 Comparison with other references for Imax = 2000:

agrees with Senatore, Tassev, Zaldarriaga '08 for /min=100:

Su, Lim, Shellard ’12:

Pettinari, Fidler, Chrittenden, Koyama, Wands ’13:

S/N = 0.69;

N = 0.88;

S/N = 0.47; ff = 0.57



Conclusion

 Second order effects are finally under control!

» CosmolLib2n9: full calculation, on all scales, of bispectrum from nonlinear effects at
recombination

e Consistent separation between second-order sources at recombination from better known
ISW-lensing correlation

» Perfect agreement with squeezed limit formula and previous literature. Squeezed limit
formula can be practically employed to compute the S/N.

 Small S/N but signal likely to be detectable with /nax~3000 and including polarization

 Small contamination to local primordial non-Gaussianity for Planck but sizeable on local
primordial signal:
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Let’s include them in the next analysis!



The shape of the bispectrum
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Comparison with SONG

=== Analytical approximation
<=« Numerical without redshift term
=== N|lumerical with redshift term
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