Outline	Introduction	Swiss Cheese theorem	A different model	Summary

Backreaction in Swiss Cheese models

Mikko Lavinto Based on arXiv:1308.6731 with Syksy Räsänen and Sebastian Szybka

mikko.lavinto@helsinki.fi University of Helsinki and Helsinki Institute of Physics

16.4.2014, PONT, Avignon

・ 同 ト ・ ヨ ト ・ ヨ ト

Outline	Introduction	Swiss Cheese theorem	A different model	Summary

Outline

- Introduction and motivation
- Swiss Cheese theorem
- A different model
- Summary

Backreaction in Swiss Cheese models mikko.lavinto@helsinki.fi University of Helsinki and Helsinki Institute of Physics

・ロト ・同ト ・ヨト ・ヨト

-

Outline	Introduction	Swiss Cheese theorem	A different model	Summary

The standard way of dealing with inhomogeneities:

- Take a background FRW-universe
- Add 'small' perturbations on top
- Evolution of the background is independent of the inhomogeneities by construction!

- 4 E 6 4 E 6

Outline	Introduction	Swiss Cheese theorem	A different model	Summary

The standard way of dealing with inhomogeneities:

- Take a background FRW-universe
- Add 'small' perturbations on top
- Evolution of the background is independent of the inhomogeneities by construction!
- In perturbation theory, also $\langle \theta \rangle \simeq \theta_b$

同 ト イヨ ト イヨ ト

Outline	Introduction	Swiss Cheese theorem	A different model	Summary

The standard way of dealing with inhomogeneities:

- Take a background FRW-universe
- Add 'small' perturbations on top
- Evolution of the background is independent of the inhomogeneities by construction!
- In perturbation theory, also $\langle \theta \rangle \simeq \theta_b$
- Backreaction is identically zero

伺 ト イヨト イヨト

Outline	Introduction	Swiss Cheese theorem	A different model	Summary

The standard way of dealing with inhomogeneities:

- Take a background FRW-universe
- Add 'small' perturbations on top
- Evolution of the background is independent of the inhomogeneities by construction!
- In perturbation theory, also $\langle \theta \rangle \simeq \theta_b$
- Backreaction is identically zero
- Can we do anything else?

Outline	Introduction	Swiss Cheese theorem	A different model	Summary

Swiss Cheese models

Embed a LTB (or Szekeres) solution into a background FRW

$$ds^{2} = -dt^{2} + rac{R'(t,r)^{2}}{\sqrt{1+E(r)}}dr^{2} + R^{2}(t,r)d\Omega^{2}$$

- Solves Einstein equations exactly (Darmois junction)
- Only dust \rightarrow singularities
- Can have many holes, as long as they do not overlap
- Can be made statistically homogeneous and isotropic

- 4 周 ト 4 戸 ト 4 戸 ト

Outline	Introduction	Swiss Cheese theorem	A different model	Summary

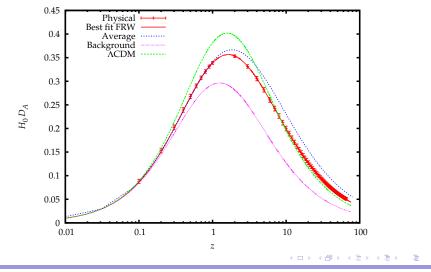
SC theorem

Under the following conditions, $\langle heta_{
m hole} \rangle \simeq heta_b$

- 1. There exists a coordinate r for the LTB solution, for which R(t, r = 0) = 0 at all times,
- 2. R(t, r) is a monotonous function of r,
- 3. Today (t_0) all regions are approximately equally old, $t_{B\max} - t_{B\min} \ll t_0$ and they have no singularities before today,
- 4. The LTB solution can be matched continuously to an FRW spacetime at the boundary,
- 5. The holes are small compared to the curvature radius of the universe.

(四) (말) (말)

Outline	Introduction	Swiss Cheese theorem	A different model	Summary


Tardis?

- R' = 0? What happens?
 - Boundary layers on shells with R' = 0
 - ightarrow ightarrow no longer a dust-only solution
 - Can be understood as a weird embedding of multiple LTB solutions
 - ▶ If we allow $\langle \theta_{\rm hole} \rangle \neq \theta_b$, the real volume of holes is different from the embedding region \rightarrow "larger from the inside"
 - ► If we disregard the boundary layers, everything behaves well

くぼう くほう くほう

Outline	Introduction	Swiss Cheese theorem	A different model	Summary

Results

Backreaction in Swiss Cheese models mikko.lavinto@helsinki.fi University of Helsinki and Helsinki Institute of Physics

Outline	Introduction	Swiss Cheese theorem	A different model	Summary

- Swiss Cheese models are very limited by their construction
- Under some physical conditions, backreaction must be small
- Breaking the conditions can lead to interesting effects