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Dark matter annihilation signal

The observables reveal:

1. Densityand o

2. Dark matter mass

3. Coupling to SM particles
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Tomorrow morning’s talk by Jan Conrad
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Fermi satellite

Launched in June 2008

Large area telescope (LAT)
* Primary instrument of Fermi, consists of:
- Anticoincidence
- Pair conversion detector

- Calorlmeter [ _ Anticoincidence
e 20 MeV — 300 GeV : ~  Detector (background rejection)
* Field of view 2.4 sr at 1 GeV : ~H— Conversion Foll

* PSF<1degabovel GeV

T\ Particle Tracking
Detectors

Data and analysis tools are public: .
http://fermi.gsfc.nasa.gov/ssc/data/ - _ Calorimeter

~~(energy measurement)
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Where to look

Galactic Center _
Inner galaxy Galactic halo

. \4
T N —————t.

(2 years map, E > 1 GeV) ' un-ID
The sun | ‘ sources
(subhalos?)

Dwarf galaxies Galaxy clusters

Isotropic gamma-ray background
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The Galactic Center GeV Excess (GCE)

Claimed detections of an extended excess
towards the Galactic Center region, first by
Goodenough & Hooper (2009) and
independently by multiple groups, with the
following main features:

* Spectrum peaks at several GeV

* Morphology follows ~r24

* Peak flux of a few x 107 GeV cm? st

30 GeV, bb channel —— Sum

Dark Matter
ov = 6e-27 CmSS_l — — Point Source
---- Galactic Ridge (7%= 7y)

E® dN/dE (GeV ecm™® s71)

109

*  Fermilab/U Chicago: Hooper, Linden Hooper & Linden (2011) E7 (GeV)

*  Hardard/MIT: Finkebeiner, Slatyer, Daylan

* leiden/Lausanne: Boyarsky, Rochaysky

*  Christchurch: Gordon Macias

*  UCIrvine: Abazajian, Canac, Horiuchi,
Kaplinghat

If interpreted as dark matter,
these imply:
* 10-100 GeV mass
* Density scales as r?
* Close to thermal ov GCE residual

0 —2
Shunsaku Horiuchi (UC Irvine) Abazajian & Kaplinghat, PRD 2012
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The Galactic Center | €M teegiie
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The Galactic Center
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The Galactic Center
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The Galactic Center

i
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3EG J1744-3011
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Cosmic-ray electrons

* Non-thermal e  can be probed by @1.4 GHz map
* Asargued in Yusef-Zadeh et al (2012), the same e will bremsstrahlung on molecular gas

nuclei leading to gamma rays
* The similarity of the radio and Fermi maps support a link.
* The scenario also consistently explains X-ray line observations  yvusef-zadeh et al, ApJ (2012)

Fermi 1 - 300 GeV Green Bank Telescope 1.4 GHz radio

2FGL J1738.9-2008 2FGL J1738.9-2008

1FGL J1744.0-2931c
2FGL J1743.9-3030¢c

2FGL J1748.6-2013 O
(@) 2FGL J1747.1-3000
(o]

2FGL J1747.3-2825¢ 25 GLgigeai6-2858
o {C
1FGL J1744.0-2031c
2FGL J17486) .

2FGL J1743.9-3039

2FGL J1748.6-2013 O
© 2FGL J1747.1-3000
(o]

2FGL J1746.6-2851¢c

2FGL J1745.5-3028¢c 2FGL J1745.5-3028¢c

NB: after subtracting the Fermi
diffuse templates (Gal + Iso)

1 : : 1 ! : : :
2.000 1.500 1.000 0.500 0.000 359.500 359.000 358.500 358.000 357.500
GLON
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Fit procedure

* Use 57 months of public Pass7 data (do not use Pass7REP since they are not
recommended for diffuse searches larger than ~2 deg)

— Unless otherwise stated, use 0.2 — 300 GeV source class photons
* Use the standard Fermi science tools
* Modeled point sources include:
1. All 2FGL catalogued point sources (17) in the ROI (7x7 deg?)
2. Two point sources not in 2FGL detected with high significance (AlnL > 25)
* Modeled diffuse sources include:
The galactic diffuse-emission model provided by the Fermi Collaboration
The isotropic emission model provided by the Fermi Collaboration
The Greenbank Telescope 1.4 GHz map [NEW]
A power-law 6T morphology source [NEW]

An isotropic uniform offset [in which case #4 is kept constant]

© N O U kW

The GCE source with r¥ morphology
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E =086 — 1.10 GeV E =141 — 1.79 GeV

Detections

New diffuse residuals

Residual

Use the standard Fermi analysis
tools to model the instrument
response, and perform studies
including the new diffuse template:

Diffuse Sources’

_ . New diffuse model
e The new diffuse source is

detected with high significance
(AInL improvement of ~503)

L
=
-
%
-

 The Galactic Center Excess
continue to be detected at high
significance (AInL improvement GCE residuals
of ~85)

NB: Fermi collaboration criteria for
point source detection is AlnL = 25

GCE Source Residual
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GCE spectrum

When the new diffuse sources (isotropic + 1.4 GHz + power-law) are included, the
best-fit GCE spectrum changes dramatically more than the statistical uncertainties

2x107"

Diffuse sources similar to
previous studies

With the new diffuse
sources (isotropic +
1.4GHz + power-law
source)

The change is especially
striking at low energies,
which impact both the dark
matter and pulsar . . 1 2 10
interpretations of the GCE E [GeV]

Abazajian, Canac, HORIUCHI, Kaplinghat (2014)
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GCE spatial morphology

With the inclusion of the new diffuse sources (isotropic + 1.4 GHz + power-law
source), the best-fit GCE morphology follows r?¥ with y =-1.12 + 0.05 (10).

The morphological fit is robust: it is supported by data at various distances from

the GC
Curves are

for ril

7 deg

7 deg

¥ % inner1,0°x1,0°
¢ ¢ outside 1,0°x1.0°
k % outside 4.0°x4.0°

7 deg

Photon energy (GeV)

7 deg Abazajian, Canac, HORIUCHI, Kaplinghat (2014)
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Impact on dark matter interpretation

The best-fit uncertainty is dominated by systematics:

w
S

A[2In(L)]

A[2In(L)]

[y
==

Abazajian, Canac, HORIUCHI, Kaplinghat (2014)
* Both channels are equally good fits. Y

* The mass is well determined to ob: my = 39.4 (_2.9 stat.) (£7.9 sys.) GeV
within ~10 — 20%. l(0v); = (5.1+2.4) x 10726 cm?3 s71,

my = 9.43 (T29 stat.) (£1.2 sys.) GeV
X 0.52

* Bremsstrahlung softens the spectrum

(Cirelli et al 2013), giving higher mass - _ 26 8 1
bb: ~40.9 GeV tt: ~10.2 GeV B (00);+,- = (0.51 £0.24) x 107" em® s7°,
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Consistency with
other limits

CvVn I1§ ® Com
; CvnI O Bool Leo II®
o® Wil 1 Boo III ®Boo II v
UMal : @Leo IV sgeg I1
oUMall oM -

Dwarf limits: strong limits set on
annihilation; the GCE is currently
consistent with these

Ackerman et al (2013)
Direct detection: strong spin-
independent scattering cross
section (e.g., LUX); can also evade
these

e.g., Boehm et al (2014) Mass (GGV/CQ)
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Can the GCE be due to pulsars?

Differences between the GCE and MSP spectra in the low-energy region, but this
region is dominated by systematic uncertainties due to the diffuse modeling.

Above E ~ 2 GeV, the best-fit
GCE match well, and the
spectra are in agreement with
MSPs.

The number of MSPs required
can be estimated from
energetics, e.g.:

E>2GeV
N47Tuc GCE
MSP F>2GeV
MSP,47Tuc

=» Needs 3700 — 4800 MSPs.
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cf stellar mass ~10° Msun Log[Energy/GeV]

e.g., Abazajian (2011) Abazajian, Canac, HORIUCHI, Kaplinghat (2014)
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GCE signal in the inner galaxy?

GCE-like signal may reach ~10 degree Millisecond pulsar?
Using M31 X-ray binaries as a template,
distribution ~consistent with GCE

N/arcmin?

~~
1=
n
N
)
N
N
-
0
N
>
L
<
[
o
~N
Z
s
N
&

¥ (degrees)
Daylan et al (2014), also Hooper & Slatyer (2012) Voss & Gilfanov, A&A (2007)

Not inconsistent with MSP when luminosity function is relaxed
Yuan & Zhang (2014)
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Conclusions

e Galactic Center GeV Excess (GCE): triple coincidence with ~vanilla dark matter
predictions gathering interest

 However, the Galactic Center is a complex region
—> motivates constant improvement of background modeling

- We specifically explored emission with spatial morphology of the 1.4GHz
radio map, probing cosmic-ray e interaction on molecular gas

 The GCE is detected at high significance. However, determination of GCE
properties — its low-energy spectrum in particular — is systematics dominated.
Currently:

* The DM mass is determined well, at better than ~20%
e bbar and t*t channels are equally favored
* MSP interpretation remains viable with some modifications to observed MSP

Thank you!
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Impact on | 1
Point Sources o
/

The new diffuse sources affect best

fits of point sources in the ROl as With the new
well. diffuse sources
L L roo oy | L L

|

1

£ [Ge\ﬂ)azajian et al (2014)

In particular, the Sgr A* spectrum
becomes less curved and more

power-law like with index -2.3

IIIHIIII | IIIHIII | Illlllll IIIIIIIII | Illllll] IIIIIIII] T TTTIZ T3
1

I TTTTTT

l pc
2 pcC
3 pc

O pc

1 L1111

Under the hadronic scenario, the
GeV emission comes from
diffusively escaping protons = the
new Sgr A* spectrum implies
reduced diffusion, reduced
diffusion region size, or reduced
activity.

I

L1111l

| Illll.ll

Chernyakova et al (2011)
Linden & Profumo (2012)

1 Ill]ll
1 llllllll

|

PONT Avignon 2014, 04/15/2014 Shunsaku Horiuchi (UC Irvine) 23



Bremsstrahlung effects of the annihilation products tend to soften the gamma ray spectrum.

Bremsstrahlung modification

The exact effect is astro model-dependent.
The softer spectrum results in an increased best-fit DM mass:
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Cirelli et al (2013)
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Connection to Direct Detections

Very strong limits from e.g., LUX (Xe)

Limits can be evaded, e.g., if the
interaction is mediated by a light
(~10GeV) pseudo-scalar a with
Yukawa couplings to the SM

The scattering cross section is
spin-dependent and velocity-
suppressed
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e.g., Boehm et al (2014)

LUX, PRL (2014)
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Connection to collider constraints

No constraints on the
presedoscalar scenario at the
moment.

LHC 14 TeV

Monojet search @LHC:
Limits large gy, Not yet reaches
values required by the GCE

=
S

Higgs = aa decay @LHC:
Form,<m, /2

@LEP, Tevatron:

Pseudoscalar—massive vector
boson coupling suppressed

Boehm et al (2014)
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Other annihilation constraints

Clusters: CMB limit
Gamma-ray search from

] WMAP9
Ga Iaxy CI USterS' depen(_jent Current (WMA P9+Planck+ACT+SPT+BAO+HST+SN)
on CR baCkgI’OUﬂdS, p0|nt Full Planck temp. and pol. forecast
sources, and uncertain CMB Stage 4 forecast

Cosmic Variance Limit

boost factor, but can be
constraining

Han et al (2012)
CMB:
Calorimetric measure of

DM annihilation, not quite
there yet

Madhavacheril et al (2013)

Anisotropy:

Gamma-ray anisotropy
limits DM annihilation; not
quite there yet

Madhavacheril et al (2013)
Ando & Komatsu (2012)
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Can the GCE be due to pulsars?

Some arguments in the literature:
* GCE robustly detected (unlike previous hints)
* GCE requires ~vanilla WIMP (unlike previous)
* GCE doesn’t have a simple astro explanation

* GCE is spherical (to within 20%)

* GCE is centered on Sgr A*

e GCE spectrum different from MSP?

—-—- NGC 6266

)
e
=
o
o
@

""" Terzan 5
— — - All MSPs
— Dark Matter

E* dN/dE (Arb. Units

| Daylan et al 2014

135

90
egrees from the Galactic Plane
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