## Cosmology with type Ia Supernovae

 $\mathsf{Marc}\ \mathsf{Betoule}$ 

LPNHE

PONT d'Avignon, April 18th 2014





### Mapping the distance-redshift relation with SNe-Ia

Probe of the expansion history at late time

$$d_{L}(z) = (1+z)c \int \frac{dz}{H(z)}$$
  
=  $(1+z)\frac{c}{H_{0}} \int dz \left(\Omega_{m}(1+z)^{3} + \Omega_{x}(1+z)^{3(1+w)}\right)^{-1/2}$  with:  $w = \frac{p_{x}}{\rho_{x}}$ 



Improving measurement accuracy 000000000 Cosmological constraints 00000 Perspectives 00000000000000

# From acceleration discovery to Dark Energy characterization



## Discovery of accelerated expansion

 Riess et al. (1998), Perlmutter et al. (1999)



Improving measurement accuracy 000000000 Cosmological constraints 00000

Perspectives 00000000000000

# From acceleration discovery to Dark Energy characterization



Perspectives

## Constraining dark energy with SN-Ia: OUTLINE



2 Improving measurement accuracy

Status of cosmological constraints from SNe Ia

4 Perspectives



## Where is the Supernovae?

Cosmology with SN-Ia 000 Towards a 1000 SNe la sample OOOOOO Improving measurement accuracy 000000000 Cosmological constraints 00000 Perspectives
000000000000

## Detecting and measuring SNe



## Take images of the same sky region at different epochs

• Transient pops out in the difference

#### Measure the apparent luminosity

- ${\ensuremath{\, \bullet }}$  at several time  ${\ensuremath{\, \to }}$  shape
- in several bands  $\rightarrow$  color

#### Measure a spectrum

- Identification
- Redshift



Cosmology with SN-Ia 000 Towards a 1000 SNe la sample ○●○○○○○ Improving measurement accuracy 000000000 Cosmological constraints 00000 Perspectives
000000000000

## Detecting and measuring SNe



## Take images of the same sky region at different epochs

• Transient pops out in the difference

#### Measure the apparent luminosity

- ${\ \bullet\ }$  at several time  $\rightarrow$  shape
- in several bands  $\rightarrow$  color

#### Measure a spectrum

- Identification
- Redshift



## A key technology

#### The rise of the rolling-search approach...

#### 20 21 22 23 24 25 26 May Jul Sep Nov Jan 2005

## with large CCD matrices



### Requirements

- O Discovery in images subtraction
- Ilux evolution measurement
- Host galactic flux model
- Spectroscopic follow-up: identification and redshift measurement

## Multiplex step 1-3 for several SNe-Ia in the same image

- Repeated imaging of the same sky portion
- Implemented in 3 major survey
- Classical spectroscopic follow-up

Cosmology with SN-Ia 000 Towards a 1000 SNe Ia sample

Improving measurement accuracy 000000000 Cosmological constraints 00000 Perspectives 0000000000000000

## ESSENCE (Wood-Vasey et al. 2007)





- CTIO Blanco 4m telescope
- $36' \times 36'$  Mosaic camera
- $m low \sim 100~SNe-la$



## Supernovae Legacy Survey (Astier of al. 2006)

 1 square degree MegaCam camera
 1500 h on the CFHT 3.6m
 Spectroscopic follow-up: ~1500h on 8m VLT-Keck-Gemini
 500 spectroscopically confirmed She-la

CANADA-FRANCE-HAWAII TELESCOPE

Cosmology with SN-Ia

Towards a 1000 SNe Ia sample

mproving measurement accurac

Cosmological constraints

Perspectives 00000000000000

## The SDSS-II Supernovae Survey (Kessler et al. 2009)

- 1.5 degree-wide fast-scanning SDSS Camera
- $\circ \sim 2000$  hours on the 2.5m SDSS telescope
- $\circ \sim 500$  spectroscopically confirmed SNe-Ia

 Cosmology with SN-Ia
 Towards a 1000 SNe Ia sample
 Improving measurement accuracy
 Cosmological constraints
 Perspectives

 000
 0000000
 00000000
 000000000
 0000000000

### The available sample: > 1000 SNe with spectroscopic ID



Follow-up of low-z supernovae: 0.01 < z < 0.1

- $\bullet\,$  About  $\sim$  500 followed, dominated by 2 samples:
  - Harvard Center for Astrophysic (Hicken et al. 2012)
  - Carnegie Supernovae Project (Stritzinger et al. 2011)

#### Rolling search survey: 0.1 < z < 1

- $\sim 2000~{\rm SN-Ia}$
- Spectroscopic identification for about half of them.

#### High-z events with the HST: 0.9 < z < 1.5

- Successful search with the ACS (continuing with WFC-3)
- About 40 events today (Riess et al. 2007, Dawnson et al. 2009)

IF

| Cosmology with SN-Ia | Towards a 1000 SNe la sample | Improving measurement accuracy | Cosmological constraints | Perspectives   |
|----------------------|------------------------------|--------------------------------|--------------------------|----------------|
| 000                  | 000000                       | •00000000                      | 00000                    | 00000000000000 |
|                      |                              |                                |                          |                |

## Outline



2 Improving measurement accuracy

3 Status of cosmological constraints from SNe la

Perspectives



| Cosmology with SN-Ia | Towards a 1000 SNe la sample | Improving measurement accuracy | Cosmological constraints | Perspectives       |
|----------------------|------------------------------|--------------------------------|--------------------------|--------------------|
| 000                  | 000000                       | 000000000                      | 00000                    | 000000000000000000 |
|                      |                              |                                |                          |                    |

### Measurement basics



#### Required ingredients



| Cosmology with SN-Ia | Towards a 1000 SNe la sample | Improving measurement accuracy | Cosmological constraints | Perspectives  |
|----------------------|------------------------------|--------------------------------|--------------------------|---------------|
| 000                  | 000000                       | 000000000                      | 00000                    | 0000000000000 |
|                      |                              |                                |                          |               |
|                      |                              |                                |                          |               |

#### Measurement basics



#### Required ingredients

 Measure flux ratios in different observer-frame band → inter-calibration



| 000                  | 0000000                      | 000000000                      | 00000                    | 0000000000000 |
|----------------------|------------------------------|--------------------------------|--------------------------|---------------|
| Cosmology with SN-Ia | Towards a 1000 SNe la sample | Improving measurement accuracy | Cosmological constraints | Perspectives  |

#### Measurement basics



#### Required ingredients

- Measure flux ratios in different observer-frame band → inter-calibration
- Interpolate in time and wavelength  $\rightarrow$  Light-curve model



### Short story of the model uncertainty

#### Controversy about light-curve models (e.g. Kessler et al 2009)

009 FIRST-YEAR SLOAN DIGITAL SKY SURVEY-II SUPERNOVA RESULTS

we find  $w = -0.76 \pm 0.07(\text{stat})\pm 0.11(\text{syst})$ ,  $\Omega_{\rm M} = 0.307 \pm 0.019(\text{stat})\pm 0.023(\text{syst})$  using MLCs2K2 and  $w = -0.96 \pm 0.06(\text{stat}) \pm 0.12(\text{syst})$ ,  $\Omega_{\rm M} = 0.265 \pm 0.016(\text{stat}) \pm 0.025(\text{syst})$  using the sALT-II filter. We trace the discrepancy between these results to a difference in the rest-frame UV model combined with a different luminosity correction from color variations; these differences mostly affect the distance estimates for the SNLS and *HST* SNe. We present detailed discussions of systematic errors for both light-curve methods and find that

#### Essentially understood in the 2009 paper



- MLCS2k2 trained only on low-z SNe
   → affected by Observer-frame U-band
   calibration problems
- MLCS2k2 assumed that color variation was due to extinction by Dust (> 0)
   → Evidences for intrinsic color variation (e.g. Stritzinger et al. 2011)

## Brief history of the calibration uncertainty

#### Astier et al 2006

Table 6 Summary of uncertainties in the derived cosmological parameters. The dominant systematic uncertainty arises from the photometric calibration, itself dominated by the  $i_M$  and  $z_M$  band contributions.

Large efforts on wide-field camera photometric accuracy

- e.g. lvezic et al. (2007), Regnault et al. (2009)
- Reach percent level accuracy



Conley et al., Sullivan et al. (2011)

- Statistics  $\times 3.5$
- Statistical and calibration uncertainties at the same level

IE.

Cosmology with SN-Ia 000 Towards a 1000 SNe la sample 0000000 Improving measurement accuracy 000000000 Cosmological constraints 00000 Perspectives 00000000000000

## Recent dev: The SNLS/SDSS JLA working group



#### Formed to address the issue of measurement systematics

- Transverse WG joining the two main SNe-Ia surveys
- Started in June 2010
- Share data, code and expertise

#### 2 main outcomes:

- SNe light curve model: Kessler et al. (2013), Mosher et al. (2014)  $\rightarrow$  Validation of the SALT2 model
- Joint photometric calibration analysis: Betoule et al. (2013)  $\rightarrow$  Recalibration of the SNLS and SDSS

## JLA work to quantify systematics associated to SALT2

#### End-to-end test of the SALT2 method (Mosher et al. 2014.)



- Various SN models in input
- Extensive MC simulations
- Propagation through the whole chain
- Test the bias on reconstructed distances
- With the currently available "training" sample:  $\Delta \mu < 0.03$

#### Well below the level of calibration uncertainties



#### What is photometric calibration ?



## I) Characterization of the instrument response

• Enable measurement of **flux ratios** in a single image





#### What is photometric calibration ?



## I) Characterization of the instrument response

• Enable measurement of **flux ratios** in a single image



### II) Calibration transfer

- HST standard stars as primary calibration source
- Enable comparison of flux in different bands/instruments

#### What is photometric calibration ?



## I) Characterization of the instrument response

• Enable measurement of **flux ratios** in a single image



### II) Calibration transfer

- HST standard stars as primary calibration source
- Enable comparison of flux in different bands/instruments

## Result I: "Flat-fielding" 2 wide-field camera at 0.3%

#### Comparison of SDSS/SNLS photometry



- SNLS and SDSS flat-fields obtained independently
- Achievement of wider interest (e.g. Photo-z)



## Result II: $\sim 0.5\%$ accuracy in absolute calibration

Short and redundant paths for calibration transfer



#### New data

- Direct observation of HST stars
- Direct SNLS/SDSS cross-calibration



## Final uncertainty dominated by HST calibration

## Enable:

- Comparison of several paths
- 0.3% accuracy in gri

| Cosmology with SN-Ia | Towards a 1000 SNe Ia sample | Improving measurement accuracy | Cosmological constraints | Perspectives                            |
|----------------------|------------------------------|--------------------------------|--------------------------|-----------------------------------------|
| 000                  | 0000000                      | 000000000                      | 00000                    | 000000000000000000000000000000000000000 |
|                      |                              |                                |                          |                                         |

## In Summary

#### New SNLS and SDSS calibration (Blind wrt cosmology)

- More robust
- More accurate

#### Changes at the percent level wrt SNLS3 calibration

| band                     | g     | r    | i   | Ζ     |
|--------------------------|-------|------|-----|-------|
| $\Delta Z_{SNLS}$ (mmag) | -12.9 | -0.9 | 1.3 | -17.9 |
| $\Delta Z_{SDSS}$ (mmag) | -4.0  | 0.0  | 0.0 | -6.0  |

#### Sets a milestone for next generation surveys

- Lessons to be learn
- Likely to improve in future survey
  - Better sensitivity in the infrared
  - Better characterization of the instruments
  - Better photometric standards (Lab-made calibration sources ?)

| Cosmology with SN-Ia | Towards a 1000 SNe la sample | Improving measurement accuracy | Cosmological constraints | Perspectives   |
|----------------------|------------------------------|--------------------------------|--------------------------|----------------|
| 000                  | 0000000                      | 000000000                      | <b>●</b> 0000            | 00000000000000 |
|                      |                              |                                |                          |                |
|                      |                              |                                |                          |                |

## Outline



2 Improving measurement accuracy

3 Status of cosmological constraints from SNe la

4 Perspectives







- 118 nearby SNe
- 93 SDSS SNe
- 242 SNLS SNe
- 14 HST SNe













#### $\Omega_m$ measurement independent of CMB

- Recalibration shift SN measurement by  $1\sigma$
- Improve the uncertainty by 30%

### Impact on Dark Energy constraints



#### Large improvement of SN constraints

- Stat: additionnal SDSS data
- Sys: joint calibration analysis

#### Best measurement of w

- Planck + SN:  $w = -1.018 \pm 0.057$
- Planck + BAO:  $w = -1.01 \pm 0.08$

## Half of the improvement in the "figure of merite"

- 2012: FoM= 15 (WMAP+SDSS+SNLS)
- 2014: FoM= 30 (Planck+BOSS+JLA)

PARIS

| Cosmology with SN-Ia | Towards a 1000 SNe la sample | Improving measurement accuracy | Cosmological constraints | Perspectives       |
|----------------------|------------------------------|--------------------------------|--------------------------|--------------------|
| 000                  | 0000000                      | 000000000                      | 00000                    | 000000000000000000 |
|                      |                              |                                |                          |                    |

## About $H_0$

#### We measure relative distances

$$rac{\ell(z)}{\mathcal{L}_0}pprox rac{1}{d_L(z)}$$

with:

$$d_L(z) = (1+z)\frac{c}{H_0}\int dz \left(\Omega_m(1+z)^3 + \Omega_x(1+z)^{3(1+w)}\right)^{-1/2}$$

•  $\mathcal{L}_0 H_0^2$  is a nuisance parameter for SN cosmology

None of the SDSS/SNLS work is going to affect the cepheid + SNe-Ia  ${\it H}_0$  measurement

- Absolute measurement of distances
- Involves several astrophysical probes to build a distance ladder
- See e.g. Riess et al. (2011) for details

| Cosmology with SN-Ia | Towards a 1000 SNe la sample | Improving measurement accuracy | Cosmological constraints | Perspectives  |
|----------------------|------------------------------|--------------------------------|--------------------------|---------------|
| 000                  | 000000                       | 000000000                      | 00000                    | •000000000000 |
|                      |                              |                                |                          |               |

## Outline



2 Improving measurement accuracy

3 Status of cosmological constraints from SNe Ia

4 Perspectives



### The discovery rate will continue to increase

Because we continue to build larger and larger CCD camera on powerful instruments



#### But without significant live-spectroscopy

- SNLS: spectroscopic time on 8m pprox photometric time at CFHT 3.5m
- Following every single SNe of DES would be prohibitively expensive
- Acquire the redshift of the host galaxies

PAR

### Completion of the 2nd generation surveys



### Remaining spectro identified SN

- $\bullet \ \sim 200 \ \text{SNLS}$
- $\bullet \sim 150$  Low-z from CSP and CfA (Stritzinger et al. 2011, Hicken et al. 2012)

## Plenty of new spectroscopic data already available

- Blondin et al. 2012; Silverman et al. 2012; Maguire et al. 2012; Pereira et al. 2013
- SNFactory (Pereira et al. 2013)

#### Play the photometric ID game

Increase the statistics for SDSS and SNLS by  $\times 1.5$  (e.g. Campbell et al. 2013)

## The start of the 3rd generation surveys

#### Pan-Starrs First results

- 112 Spectroscopically confirmed SNe la
- $PSI+Planck+BAO+H_0: -1.186 \pm 0.076$
- PSI+Planck+BAO:  $-1.149 \pm 0.078$

### DES Started last year (Bernstein et al. 2012)



Melchior (Moriond 2014)

### On the low-z side

- SkyMapper (delayed)
- Possibility to follow Gaia candidate ( $\sim$  400)



• Host-galaxy redshifts from OzDes



## 4th generation

#### Around 2020: LSST

- Able to rolling-search in the full redshift range
- > 10000 SNe

## Synergy with EUCLID

- Possibility to follow a substantial number ( $\sim$  2000)
- high-z (0.75 < z < 1.5) LSST SNe
- from space with the infrared Euclid instrument

#### Numbers: Planck+ LSST and EUCLID SNe

- conservative estimate (no improvement on any topics but the statistics)
- $\sigma(w_p) = 0.02$  (FoM  $\sim 200$ )



### Measurement systematics should continue to improve

Calibration is still the dominant source of systematic uncertainty

Improvements are possible

3 reasons from which improvements are expected

- Sensitivity in the infrared
- Pewer instruments
- Instrumental effort



| Cosmology with SN-Ia | Towards a 1000 SNe la sample | Improving measurement accuracy | Cosmological constraints | Perspectives   |
|----------------------|------------------------------|--------------------------------|--------------------------|----------------|
| 000                  | 000000                       | 000000000                      | 00000                    | 00000000000000 |
|                      |                              |                                |                          |                |
|                      |                              |                                |                          |                |

### Sensitivity in the infrared





- Degeneracy between model, calibration and cosmology parameters
- New gen has increased infrared sensitivity from thick CCD
- Alleviate the degeneracy and sensitivity to calibration uncertainty

## Larger surveys, larger collaborations, fewer instruments

For the same effort you get better characterized instruments

Replace the historical low-z sample (no-longer existing instruments)



## Better instrumental control in the new generation



Gary Bernstein

### Better stability

- SNLS experimented instrumental variation: (up to 6% in uniformity, 3nm filter changes)
- New gen is apparently 1 order of magnitude better
- $\bullet\,$  And the problem was anticipated  $\rightarrow\,$  better monitoring

#### Instrumental calibration projects

- All ongoing surveys have some kind of calibration device
- Instrument monitoring
- Atmosphere monitoring
- Replace stellar-based calibration with lab-made calibration sources

## Improving the standardization process

#### Dispersion of the "standardized" luminosity estimate: 12%

- There are parameters influencing the luminosity that are not catched by the standardization process
- Those are likely related:
  - to the initial explosion condition
  - ${\scriptstyle \bullet}\,$  to the environment of the SN
- And thus likely to evolve with redshift

#### Not completely degenerated with cosmology

• Several stage of galaxy evolution coexists at a given redshift



## Where are we at this stage

Detected correlations of Hubble residuals with global environment



- Estimate host-galaxy properties
- Best correlation: galaxy-mass  $5\sigma$
- Enable average correction of the Hubble diagram

Start scrutinizing the local environment (for a subset of nearby SNe Ia

(e.g. Childress 2013, Rigault et al. 2013)

Start placing direct constraints on progenitor scenario (e.g. Li et al. 2011)

## A very active research subject

#### Pinpoint the exact physical explanation

From the nearby detailed search

### Look for a direct handle on the remaining variability

- In the spectra ?
- In the early part of the light-curve ?
- More and better unexploited data are now available
- And even more is coming



| Cosmology with SN-Ia | Towards a 1000 SNe la sample | Improving measurement accuracy | Cosmological constraints | Perspectives |
|----------------------|------------------------------|--------------------------------|--------------------------|--------------|
| 000                  | 0000000                      | 000000000                      | 00000                    | 000000000000 |
|                      |                              |                                |                          |              |

## Conclusion

Highly successful quest for an Hubble diagram with  $\sim$  1000 SNe-la



- Tightest constraints on dark energy to date (*w* at 6%)
- $\bullet\,$  In agreement with  $\Lambda CDM$
- Limited by measurement systematics
- Systematics continue to improve
- Open question on the probe

### JLA data available (arXiv:1401.4064)

- Last cosmomc release
- http://supernovae.in2p3.fr/sdss\_snls\_jla/
- If you are interested only in homogenous universe: simpler product to come (direct distance estimates)

## $\Omega_m$ constraints

### Main paper result:

• JLA sample very compatible with  $\Lambda CDM$ 

#### More compatible than SNLS3

- Small tension between the ACDM model and the SNLS3 sample
- Fitted value depended on the weighting
- 20  $\chi^2$  points gained in the recalibration



SNLS3 SALT2/SiFTO differences explained by the tension and different weights

## On the model side

## Lots of highly non-linear physics going on ...



(Jordan et al. 2008)

#### Sizeable progress

- Thermo-nuclear explosion of a C-O white-dwarf.
- e.g. Kasen (2009)



- Good qualitative agreement
- Reproduce brighter-slower relation

Not accurate enough to measure distances



## Empirical search for better SN standardization

Spectroscopic standardization



- Systematic search in the SN Factory
- So far 1 alternative: the Bailey Ratio

IF

40/40

PARIS

- $\sigma(M_B) \sim 0.12$
- Other systematic investigations (Chotard et al. in prep.)

## Non competitive with the usual distance estimate in cosmological analysis

- Statistical gain too small
- Does not pay back the cost of acquiring high quality spectra at high-z

So far the distance estimator remains essentially unchanged...

## SN model systematics ?

Empirical description of the time sequence of SN spectra (e.g. the SALT2 model)



- Fitted on spectroscopic and photometric data: "training sample"
- The surface shape is parameterized by  $m_b$ , C and  $X_1$
- $m_b$ , C,  $X_1$  fitted for each SN

#### Several points to check

- Missing spectra to constrain the model at early and late phase  $\rightarrow$  regularization
- SALT2: first order description of the light-curve shape  $\rightarrow$  holds ?
- Interplay between intrinsic dispersion and selection bias.

### Likely to improve with the new data samples

Time evolution of sn2011fe spectrum (Pereira et al. 2013)



#### Comparison with the SALT2 model



### Questionning the model of DA white dwarfs SED

