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| ook out!

* Qutlook

* The point of this talk: Ho = H(O)

* Variance of H(O) if you know P(k)

* Variance of H(O) if you don’t know P(k)

 \What to do to reduce this systematic error
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What is Hp”

* Real Universe: guv = gu(X,t)
e High school universe: guw = gu(t) = a(t) nu
* High school: Ho = a(t) / a(t)

» Real (still simplistic) Universe: O = V,,u®

Gag — 87TGNTa5 — 87TGN,0uO/IL5

1
Vﬁua — gh(w@ + OB T Wag

slide 4



What do we measure?”

 da(z) = [ Surface(obj) / Q(obj) ]
e du(z) = (1+2)2da(z)

 Forz « 1, High school universe:
du(z) = da(z) = ZH, + AZ?)

* Inreality, z = z(X,t), da = da(X,t) both given by
geodesic and geodesic deviation equation.
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But the ditference Is small,
right”? Right”

* As you would expect, yes.

e But error bars in data are also getting small these
days.

 Can no longer ignore perturbations.

slide 6



How typical Is any
perturbation”

o7 = [ N2 (k) [371(Lk)/Lk]?

P(do, L) = (oL 27‘(‘)_1 exp [—% (50/013)2}
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What does that |mply’7

This is the probability distribution of
matter inside radius L.

This Is not an observable. /

However, if one observes candles In
all directions, and treats all directions
equally, one averages over all angles.

Expand the density field in spherical
coordinates, and only keep the

monopole component. e.g. Romano, Chen (JCAP 201 1)



Advanced high school
universe

| emalitre-Tolman-Bondi metric

2 7 \ -02
aj(t,r) \\0 :
CLH — (a/J_T)/ 310 00150020 o,o:;o 0050 0070 0.100

for ALTB solutions,
see Valkenburg, GERG(2012)
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Advanced high school
universe

Mpc/h
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Lemaitre-Tolman-Bondi metric |
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Solving dynamics and
geodesics..

e AH ~ Ap

* Obviously, at first order, Ada(z) ~ -AH

e SO0 Hobs = Hinferred :”mz—vO <Z>/<dA(Z)> ~ AP
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This was it you know P(k)

 But do we really?
* Yes: CMB.

 But CMB is not here. It is at z=1100.
(Same reasoning for Pgg(k))
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Light cone ¢ \a

Us: isotropic CMB

\4

PIAOM JNQO
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Valkenburg, Marra, Clarkson, MNRASL (2013)

Copernican Prior
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CMB: WMAP Observations vs.
BAO: SDSS, 6dFGS, nggIeZ orior/bias
SN: SNLS . . .

HO: Freedman

Probability of density 2000

perturbation in ACDM

2500+

I

around us given =
observations =
—l

T+ o

Probability of density

perturbation in ACDM  500¢

around us given CMB
spectrum
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37 from H. Peiris’ talk, here, 15/04/14

A new cosmic concordance?

— CMB+BAO (ACDM) 1 HST
— CMB+BAO (ACDM+neutrinos) 1 PlaSZ
— CMB+Lensing+BAO+Clustering (ACDM+neutrinos) 1 Xray

Active neutrinos Sterile neutrinos
76F - 76F
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Bayesian Evidence does not support massive sterile neutrino
model even when combining conflicted datasets

Leistedt, HVP, Verde (to be submitted)
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One step further

e S0 far looked at full angular average. But no
observer sees infinitely many sources.
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One step further

e S0 far looked at full angular average. But no
observer sees infinitely many sources.

e Jake into account poisson noise from individual
candles: arXiv:1401.7973

The value of H; in the inhomogeneous Universe

Ido Ben-Dayan!, Ruth Durrer?, Giovanni Marozzi? and Dominik J. Schwarz?
! Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg, Germany
2 Université de Genéve, Département de Physique Théorique and CAP,
24 quat Ernest-Ansermet, CH-1211 Genéve 4, Switzerland
3 Fakultdt fiir Physik, Universitit Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
(Dated: February 6, 2014)

Local measurements of the Hubble expansion rate are affected by structures like galaxy clusters
or voids. Here we present a first fully relativistic treatment of this effect, studying how clustering
modifies the mean distance (modulus)-redshift relation and its dispersion. The best estimates of
the local expansion rate stem from supernova observations at small redshifts (0.01 < z < 0.1). It
is interesting to compare these local measurements with global fits to data from cosmic microwave
background anisotropies. In particular, we argue that cosmic variance (i.e. the effects of the local
structure) is of the same order of magnitude as the current observational errors and must be taken
into account in all future local measurements of the Hubble expansion rate.
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summary

e HO Is not what Is seems

* Age of universe (distance to CMB) is not same as
local expansion rate

e | ocal expansion rate subject to local physics

e Effect

1% w

3% Wi
5% wi
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antified: extra
<nown P(k)@r=0 + infinite observation #,
no known P(k)@r=0 but use LTB constraints

n

Known P(k)@r=0 + current Ho observation #



