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Look out!
• Outlook 

• The point of this talk: H0 ≠ H(0) 

• Variance of H(0) if you know P(k) 

• Variance of H(0) if you don’t know P(k) 

• What to do to reduce this systematic error 
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What is H0?
• Real Universe: gμν = gμν(��,t) 

• High school universe: gμν = gμν(t) = a(t) ημν 

• High school: H0 = ȧ(t) / a(t)  

• Real (still simplistic) Universe: 
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ing to the latter all locations in the universe are equivalent. However, the Copernican

principle says nothing about possible symmetries of the geometry or the matter dis-
tribution. It is possible to have a space that has preferred directions or locations,

but where the observer is not in a preferred location. On the other hand, the cosmo-
logical principle is a statement about spacetime symmetry, however strictly speaking
it does not apply to the real universe because the universe contains structures. If the

principle is weakened and interpreted to refer to the distribution of structures, then
it is nothing but the statement of statistical homogeneity and isotropy. In modern

cosmology, this statement is a prediction of simple models of inflation, rather than a
principle, and it is subject to observational tests. Neither the Copernican principle
nor the cosmological principle (interpreted to refer to large-scale statistical proper-

ties) show that the universe would be described by the FLRW model. In the case of
observational tests [28, 32, 34–38], it is important to distinguish whether they probe

statistical homogeneity and isotropy, the FLRW metric or the Copernican principle.
(For example, the important check proposed in [34] tests the FLRW metric, not the

Copernican principle.)
Put simply, the FLRW model describes universes that are locally homogeneous

and isotropic on all scales, not universes that are only statistically homogeneous and

isotropic. Because there are large local deviations, the average evolution may be far
from the FLRW behavior even above the homogeneity scale. The possibility that the

observed change in average quantities from those of the SCDM model at late times
is due to the formation of structures may be termed the backreaction conjecture.

2. From the local to the average

2.1 The local expansion rate

We assume that the energy density dominates over pressure, anisotropic stress and
energy flux everywhere, in other words, that matter can be considered a pressureless

ideal fluid, or dust. This assumption does not hold in the real universe, where
deviations from dust evolution are important in regions of large density contrast [39].
However, it seems likely that the effect on average quantities is small, because the

fraction of volume in such regions is small [40]. For discussion of non-dust matter,
see [41–44]. In GR, the relation between the matter and the geometry is given by

the Einstein equation:

Gαβ = 8πGNTαβ = 8πGNρuαuβ , (2.1)

where Gαβ is the Einstein tensor, GN is Newton’s constant, Tαβ is the energy–
momentum tensor, ρ is the energy density and uα is the four-velocity of observers

comoving with the dust. The gradient of uα can be decomposed as

∇βuα =
1

3
hαβΘ+ σαβ + ωαβ , (2.2)
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where hαβ projects orthogonally to uα, i.e. onto the dust rest frame. The trace

Θ ≡ ∇αuα is the volume expansion rate, the traceless symmetric part σαβ is the shear
tensor and the antisymmetric part ωαβ is the vorticity tensor (see e.g. [45, 46]). In

the FLRW case, the volume expansion rate is 3H , where H is the Hubble parameter,
and the shear and the vorticity vanish.

The equations can be be decomposed into scalar, vector and tensor parts with

respect to the spatial directions orthogonal to uα. We need only the following scalar
parts:

Θ̇+
1

3
Θ2 = −4πGNρ− 2σ2 + 2ω2 (2.3)

1

3
Θ2 = 8πGNρ−

1

2
(3)R + σ2 − ω2 (2.4)

ρ̇+Θρ = 0 , (2.5)

where the dot stands for a derivative with respect to the proper time t measured by

observers comoving with the dust; σ2 ≡ 1
2σ

αβσαβ ≥ 0 and ω2 ≡ 1
2ω

αβωαβ ≥ 0 are
the shear scalar and the vorticity scalar, respectively. In the irrotational case, (3)R

is the scalar curvature of the hypersurface which is orthogonal to uα; see [47] for the
definition of this term in the case of non-vanishing vorticity.

Equation (2.5) shows simply that the energy density is proportional to the inverse

of the volume, in other words that mass is conserved. The Hamiltonian constraint
(2.4) is the local equivalent of the Friedmann equation for an arbitrary dust space-

time, and it relates the expansion rate to the energy density, spatial curvature, shear
and vorticity. The Raychaudhuri equation (2.3) gives the local acceleration. We

assume that the fluid is irrotational, i.e. that the vorticity is zero. As with the
assumption that the matter is dust, the irrotationality assumption is violated in the
real universe, but the violation is not expected to change the overall picture because

vorticity is expected to be large only in a small fraction of space. See [42] for the
case in which the vorticity is non-zero. Because vorticity contributes positively to

the acceleration, setting it to zero gives a lower bound. In this case, the local ac-
celeration is always negative, or at most zero, which simply expresses the fact that
gravitation is attractive for matter that satisfies the strong energy condition, which

here reduces to ρ ≥ 0.

2.2 The average expansion rate

When discussing averages, the first question concerns the choice of the hypersurface

on which the average is taken. We choose the hypersurface orthogonal to uα, which
is also the hypersurface of constant proper time t measured by the observers; we

discuss this choice in section 4. The spatial average of a scalar quantity ψ is its
Riemannian volume integral over a compact domain D on the hypersurface, divided

– 6 –
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What do we measure?
• dA(z) = √[ Surface(obj) / Ω(obj) ]  

• dL(z) = (1+z)2dA(z) 

• For z ≪ 1, High school universe:  
dL(z) = dA(z) = z/H0 + O(z2) 

• In reality, z = z(��,t), dA = dA(��,t) both given by 
geodesic and geodesic deviation equation.
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But the difference is small, 
right? Right?

• As you would expect, yes. 

• But error bars in data are also getting small these 
days. 

• Can no longer ignore perturbations.
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How typical is any 
perturbation?
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Testing the Copernican principle by constraining spatial homogeneity 3

2010), which consists of 472 type Ia supernovae in the red-
shift range z = 0.01 � 1.39. We include two nuisance pa-
rameters describing stretch-luminosity and color-luminosity
relationships, as in Guy et al. (2010).
CMB: We fit the CMB according to the method presented
in Moss et al. (2011); Biswas et al. (2010), in which an e↵ec-
tive FLRW metric is used to account for the di↵erent area
distance to the surface of last scattering as compared to
the homogeneous background model. This method ignores
isocurvature modes (consistent with the choice of a homoge-
neous big bang), assumes a standard number of relativistic
degrees of freedom and a standard power spectrum, all of
which would change the constraints (Clarkson 2012). More-
over, we assume that the late-time integrated Sachs-Wolfe
e↵ect is not a↵ected by the presence of the inhomogeneity.
We fit our model to the WMAP 7-year data release (Ko-
matsu et al. 2011).
BAO: The sound horizon during the drag epoch is im-
printed in the galaxy correlation function. In a spherically
symmetric inhomogeneous model this is an ellipsoid with
proper scales, when viewed from the centre

L?(z) = ds
a?(z)

a?(td, r(z))
= dA(z)✓s(z) , (11)

Lk(z) = ds
ak(z)

ak(td, r(z))
=

zs(z)
(1 + z)Hk(z)

, (12)

where td is the time of the drag epoch, ✓s is the angle that
the acoustic scale subtends on the sky, and zs is the red-
shift interval corresponding to the acoustic scale in the ra-
dial direction. The sound horizon ds is calculated assuming
a homogeneous early universe. We use observations from
SDSS, 6DFGS and WiggleZ (Percival et al. 2010; Beutler
et al. 2011; Blake et al. 2011), as compiled in Zumalacar-
regui et al. (2012).
Compton y-distortion: O↵-centre observers see a large
dipole in the CMB in an inhomogeneous universe. CMB
photons are scattered from inside our past light-cone into
our line-of-sight by o↵-centre reionized structures which act
as mirrors. The spectrum observed by the central observer
is, therefore, a mixture of black-body spectra with di↵erent
temperatures, producing a distorted black-body spectrum.
In the single-scattering and linear approximations, and when
the temperature anisotropy is dominated by the induced
dipole �, the y-distortion can be written as (Moss et al.
2011):

y =
7
10

Z r
re

0

dr
d⌧
dr

�(r)2 , (13)

where r is the comoving distance down the light cone
and rre marks the reionization epoch. The time depen-
dence of the optical depth is given by d⌧/dt = �T ne(t) =
�T fb (1�YHe/2) ⇢m(t)/mp , where �T is the Thomson cross
section, fb ⌘ ⇢b/⇢m is the baryon fraction, YHe is the helium
mass fraction and mp is the proton mass. The dipole � is
found by integrating the geodesic equations (8) in the neg-
ative and positive r-directions starting from an observer at
{t(z), r(z)} back to the surface of last scattering. The di↵er-
ence in redshift between the two directions is then approx-
imately translated into the dipole observed by the scatter:
� = (z+ � z�)/(2 + z+ + z�) . The 2� upper limit from the
COBE satellite (Fixsen et al. 1996) is y < 1.5⇥ 10�5.
kSZ: The dipole � a↵ects the observed CMB also through

the kSZ e↵ect (Garcia-Bellido & Haugboelle 2008): hot
electrons inside an overdensity distort the CMB spectrum
through inverse Compton scattering, in which low energy
CMB photons receive energy boosts during collisions with
the high-energy electrons. Here we focus on the ‘linear kSZ
e↵ect’ (Zhang & Stebbins 2011), in which the e↵ect due to
all free electrons in the reionized universe is taken into ac-
count. Using the Limber approximation, the kSZ power at
multipole ` is given by Zibin & Moss (2011)

CkSZ
` ' 16⇡2

(2`+ 1)3

Z r
re

0

drr


�(r)

d⌧
dr

�2

�2
m

⇣
k̂(r), r

⌘
, (14)

where �2
m(k, z) = k3

2⇡2

Pm(k, z) is the dimensionless power
spectrum of the background model and the function
k̂(r) ⌘ k̂(k(r), z(r)) is necessary to “isotropize” the an-
gular and radial wave numbers which in an inhomo-
geneous universe evolve di↵erently: k̂(k̄, z) = k̄[(1 +
z̄)a?(t̄, r(z))

2/3ak(t̄, r(z))
1/3]/[(1 + z)a?(z)

2/3ak(z)
1/3]. We

constrain inhomogeneous models using a top hat prior 0 <
l(l + 1)

⇥
CTT

`=3000 + CkSZ
`=3000

⇤
< 59µK2, based on the results

from SPT (Shiroko↵ et al. 2011).
As we will see in the results, the use of a matter power

spectrum that is computed in the FLRW metric, �2
m(k, z),

even though the correct metric is the LTB metric, is justified.
Density contrasts that we encounter in the LTB metric are
of magnitudes such that they could be described as a linear
perturbation on the FLRW metric. Therefore, any deviation
of �2

m(k, z) from its FLRW evolution as a consequence of
the spherical perturbation, is of second order in perturbation
theory and hence suppressed since both �2

m(k, z) and the
spherical perturbation are at the linear level.
Age data: Finally, we constrain radial inhomogeneity also
by means of galaxy ages (Bolejko et al. 2011; McCarthy
et al. 2004; Simon et al. 2005; Stern et al. 2010; Moresco
et al. 2012; Wang & Zhang 2012; de Putter et al. 2012). In
particular, we use the cosmology independent age vs. red-
shift data as compiled in de Putter et al. (2012), which in
the most conservative approach only provides a lower bound
on cosmic ages. For completeness we present results using
these ages as lower bounds as well as using them as absolute
age measurements (see de Putter et al. (2012) for details).

3 COPERNICAN PRIOR

Given a gaussian density field, the mean square of den-
sity perturbations inside a sphere of radius L around any
point (hence also around the observer) today is given by
�2
L =

R1
0

dk
k �2

m0(k) [3j1(Lk)/Lk]
2, where �m0 is the power

spectrum today inferred from the CMB temperature spec-
trum, assuming a Copernican universe, and jl is the spher-
ical Bessel function of the first kind (Kolb & Turner 1990).
We calculate �L for the radius L < rb at which the central
over/under-density makes the transition to the surrounding
mass-compensating under/over-dense shell. Then we com-
pute the actual density perturbation �0 ⌘ M(L)/M̄(L)� 1
of a given inhomogeneity and define the Copernican prior as
the probability

P (�0, L) = (�L

p
2⇡)�1 exp

⇥
� 1

2
(�0/�L)

2⇤ , (15)

where M(r) ⌘ 4⇡
R r

0
dr

p
�g⇢m(r) is the mass of the inho-

mogeneity, M̄(r) = M(r)|k(r)=k
b

is the mass relative to the
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What does that imply?
• This is the probability distribution of 

matter inside radius L. 

• This is not an observable. 

• However, if one observes candles in 
all directions, and treats all directions 
equally, one averages over all angles. 

• Expand the density field in spherical 
coordinates, and only keep the 
monopole component.

9

e.g. Romano, Chen (JCAP 2011)
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Lemaître-Tolman-Bondi metric

2 W. Valkenburg et al.

2 THE MODEL

We model radial inhomogeneity assuming a spherically sym-
metric Lemâıtre-Tolman-Bondi solution including a cosmo-
logical constant Λ (ΛLTB), see e.g. (Lemaitre 1997; Tolman
1934; Bondi 1947; Romano et al. 2012; Sinclair et al. 2010;
Marra & Paakkonen 2010; Valkenburg 2012a). The metric
is given by

ds2 = −dt2 +
a2
∥(t, r)

1− k(r)r2
dr2 + a2

⊥(t, r)r
2dΩ2 , (1)

where the radial (a∥) and angular (a⊥) scale factors are
related by a∥ = (a⊥r)

′. A prime denotes partial deriva-
tion with respect to the coordinate radius r. The curva-
ture k = k(r) is a free function. The Friedmann-Lematre-
Robertson-Walker (FLRW) limit is k → const., and a⊥ = a∥.
The two scale factors define two Hubble rates:

H⊥ = H⊥(t, r) ≡ ȧ⊥/a⊥ , H∥ = H∥(t, r) ≡ ȧ∥/a∥ . (2)

The analogue of the Friedmann equation in this space-time
is then given by H2

⊥ = m(r)/a3
⊥ − k/a2

⊥ +Λ/3 , where m(r)
is a non-negative free function of r related to the locally
measured matter density 8πG ρm(t, r) = (m(r)r3)′/a∥a

2
⊥r

2 ,
which obeys the conservation equation ˙ρm+(2H⊥+H∥)ρm =
0 . Dimensionless density parameters for the CDM and cur-
vature are in analogy with the FLRW models:

Ωm(r) =
m

H2
⊥0

, Ωk(r) = − k
H2

⊥0

, ΩΛ(r) =
Λ

3H2
⊥0

, (3)

so that Ωm(r) + Ωk(r) + ΩΛ(r) = 1. Note that in the pre-
vious equation the gauge fixing a⊥(t0, r) = 1 has been
used. Moreover, ΩΛ depends on r because the present-
day expansion rate H⊥0

is inhomogeneous. Using (3) the
Friedmann equation takes on its familiar form: H2

⊥/H
2
⊥0

=
Ωm a−3

⊥ + Ωk a
−2
⊥ + ΩΛ . Integrating the Friedmann equa-

tion from the time of the big bang tbb(r) to some later
time t yields the age of the universe at a given (t, r):

t−tbb = 1
H⊥0

(r)

∫ a⊥(t,r)

0
dx√

Ωm(r)x−1+Ωk(r)+ΩΛ(r)x2
. Hence there

is a relation between the functions tbb, Ωk and Ωm. There-
fore the ΛLTB model is specified by two free functional
degrees of freedom, and we use Ωk(r) and tbb(r). By de-
manding a homogeneous age of the universe we fix the bang
function to zero, tbb(r) = 0. This ensures the absence of de-
caying modes in the matter density (Silk 1977; Zibin 2008),
in agreement with the standard inflationary scenario.

We parametrize the only left freedom with the curvature
function with the monotonic profile

kα(r) = kb + (kc − kb) P3(r/rb,α) , (4)

where rb is the comoving radius of the spherical inhomo-
geneity and the function Pn – Cn everywhere – is:

Pn(x,α) =

⎧

⎨

⎩

1 for 0 ! x < α

1− e−
1−α

x−α (1−
x−α

1−α )
n

for α ! x < 1
0 for x " 1

. (5)

We choose n = 3, such that the metric is C2 and the Rie-
mann curvature is C0. Moreover, for r " rb the curvature
profile equals kb such that there the metric describes ex-

actly a curved ΛCDM model (α parametrizes the transition
kc → kb). The central over- or under-density, determined by

curvature kc, is automatically compensated by a surround-
ing under- or over-dense shell. Hence rb, kc and α are the
free parameters relative to the non-Copernican feature.

Finally, on the past light cone of a central observer, t(z)
and r(z) are determined as a function of redshift z by the
differential equations for radial null geodesics, dt

dz = −1
(1+z)H∥

and dr
dz =
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, where H∥ and a∥ are evaluated on the

light cone. The area (dA) and luminosity (dL) distances are
given by dA(z) = a⊥
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)

r(z), dL = (1 + z)2dA.

3 DATA & OBSERVABLES

H0: The local Hubble rate is obtained by measuring cos-
mological standard candles mostly within a redshift range
zmin ! z ! zmax which depends on the redshift volume that
is probed by a given experiment. We compare the observed
value to the theoretical quantity,

H0 =
c (zmax − zmin)

∫ zmax

zmin
dL(z)/[z + 1

2 (1− q0)z2]dz
, (6)

where the deceleration parameter at the centre q0 =
Ωm(0)/2−ΩΛ(0) is used to expand the luminosity distance
to the second order in redshift. The reason we compare an
averaged expansion rate to the data is because the observed
H0 in fact comes from averaging distances, so this should be
a fair comparison. We use the value measured by Riess et al.
(2011) ofHRiess = 73.8±2.4 kms−1 Mpc−1, with zmin = 0.01
and zmax = 0.1. One could be tempted to say that modern
cosmic-microwave-background (CMB) data constrain H0 al-
ready sufficiently without the inclusion of the astrophysical
data that we discuss here. However, it is crucial to realise
that only in a purely homogeneous universe, these two mea-
surements measure the same quantity. When considering the
non-Copernican feature at hand, the expansion rate varies
spatially and hence a model can predict different values for
the local astrophysical H0 (local expansion rate) and the
CMB H0 (the age of the universe and inferred from it the
global expansion rate today).
Supernovae Ia: We use the SNLS3 catalogue (Guy et al.
2010), which consists of 472 type Ia supernovae in the red-
shift range z = 0.01−1.39. We include two nuisance param-
eters describing stretch-luminosity and colour-luminosity re-
lationships, as in Guy et al. (2010).
CMB: We fit the CMB according to the method presented
in Moss et al. (2011); Biswas et al. (2010), in which an effec-
tive FLRW metric is used to account for the different area
distance to the surface of last scattering as compared to
the homogeneous background model. This method ignores
isocurvature modes (consistent with the choice of a homoge-
neous big bang), assumes a standard number of relativistic
degrees of freedom and a standard power spectrum, all of
which would change the constraints (Clarkson 2012). More-
over, we assume that the late-time integrated Sachs-Wolfe
effect is not affected by the presence of the inhomogeneity,
as the latter will turn out to be of a magnitude such that it
can be described as linear perturbations on an FLRW met-
ric (see the discussion below about the kSZ observable). We
fit our model to WMAP 7-year data (Komatsu et al. 2011).
Baryon Acoustic Oscillations (BAO): The sound hori-
zon at the time of the drag epoch td is imprinted in the

homogeneous background which predicts a mass M̄(L) inside the same radius
L. Then the probability of having such a structure is [30],
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Since the study of Dark Energy entails mainly a search for a redshift depen-
dent e�ect, it is a search for a radially dependent e�ect in a spherical coordinate
system with the observer at the origin. The observer hence averages over all
angles, which is equivalent to expanding the full matter field in spherical har-
monics, and throwing away all other information than the radially dependent
monopole. This should be a reasonable approximation as long as distance mea-
surements are averaged over angles in analyses of the dark energy equation of
state. Hence we model the inhomogeneity spherically symmetric and the mass
is given by M(r) © 4fi
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(r) with g the determinant of the metric.

3. Model for local inhomogeneity

To model the inhomogeneity averaged over angular directions, we adopt the
spherically symmetric Lemaître-Tolman-Bondi solution [32, 33, 34] including a
cosmological constant � (�LTB, see e.g. [11, 35, 36, 15]), for which we can
compute all distance measures exactly. The use of the exact LTB model allows
us to deal with nonlinear inhomogeneities, which will be encountered at small
radii or low redshifts (their contrast is of the order of ‡

L

). Structures of larger
radii could have been equally well modeled using linear theory.

The �LTB metric in the comoving and synchronous gauge can be written
as (using units for which c = 1)

ds2 = ≠dt2 +
a2

Î(t, r)
1 ≠ k(r)r2

dr2 + a2

‹(t, r)r2 d�2 , (3)

where the longitudinal (aÎ) and perpendicular (a‹) scale factors are related
by aÎ = (a‹r)Õ, and a prime denotes partial derivation with respect to the
coordinate radius r. In the limit k æ const., and a‹ = aÎ we recover the FLRW
metric, but in a LTB metric the curvature k(r) is a free function and in general
is not constant.

The two scale factors define two di�erent Hubble rates:

H‹(t, r) © ȧ‹
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The analogue of the Friedmann equation in this space-time can be written in a
familiar form,
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where we adopted the gauge fixing a‹0 = 1. However, the density parameters
are now also functions of r,
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3

for ΛLTB solutions,  
see Valkenburg, GERG(2012)
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Lemaître-Tolman-Bondi metric

2 W. Valkenburg et al.

2 THE MODEL

We model radial inhomogeneity assuming a spherically sym-
metric Lemâıtre-Tolman-Bondi solution including a cosmo-
logical constant Λ (ΛLTB), see e.g. (Lemaitre 1997; Tolman
1934; Bondi 1947; Romano et al. 2012; Sinclair et al. 2010;
Marra & Paakkonen 2010; Valkenburg 2012a). The metric
is given by

ds2 = −dt2 +
a2
∥(t, r)

1− k(r)r2
dr2 + a2

⊥(t, r)r
2dΩ2 , (1)

where the radial (a∥) and angular (a⊥) scale factors are
related by a∥ = (a⊥r)

′. A prime denotes partial deriva-
tion with respect to the coordinate radius r. The curva-
ture k = k(r) is a free function. The Friedmann-Lematre-
Robertson-Walker (FLRW) limit is k → const., and a⊥ = a∥.
The two scale factors define two Hubble rates:

H⊥ = H⊥(t, r) ≡ ȧ⊥/a⊥ , H∥ = H∥(t, r) ≡ ȧ∥/a∥ . (2)

The analogue of the Friedmann equation in this space-time
is then given by H2

⊥ = m(r)/a3
⊥ − k/a2

⊥ +Λ/3 , where m(r)
is a non-negative free function of r related to the locally
measured matter density 8πG ρm(t, r) = (m(r)r3)′/a∥a

2
⊥r

2 ,
which obeys the conservation equation ˙ρm+(2H⊥+H∥)ρm =
0 . Dimensionless density parameters for the CDM and cur-
vature are in analogy with the FLRW models:

Ωm(r) =
m

H2
⊥0

, Ωk(r) = − k
H2

⊥0

, ΩΛ(r) =
Λ

3H2
⊥0

, (3)

so that Ωm(r) + Ωk(r) + ΩΛ(r) = 1. Note that in the pre-
vious equation the gauge fixing a⊥(t0, r) = 1 has been
used. Moreover, ΩΛ depends on r because the present-
day expansion rate H⊥0

is inhomogeneous. Using (3) the
Friedmann equation takes on its familiar form: H2

⊥/H
2
⊥0

=
Ωm a−3

⊥ + Ωk a
−2
⊥ + ΩΛ . Integrating the Friedmann equa-

tion from the time of the big bang tbb(r) to some later
time t yields the age of the universe at a given (t, r):

t−tbb = 1
H⊥0

(r)

∫ a⊥(t,r)

0
dx√

Ωm(r)x−1+Ωk(r)+ΩΛ(r)x2
. Hence there

is a relation between the functions tbb, Ωk and Ωm. There-
fore the ΛLTB model is specified by two free functional
degrees of freedom, and we use Ωk(r) and tbb(r). By de-
manding a homogeneous age of the universe we fix the bang
function to zero, tbb(r) = 0. This ensures the absence of de-
caying modes in the matter density (Silk 1977; Zibin 2008),
in agreement with the standard inflationary scenario.

We parametrize the only left freedom with the curvature
function with the monotonic profile

kα(r) = kb + (kc − kb) P3(r/rb,α) , (4)

where rb is the comoving radius of the spherical inhomo-
geneity and the function Pn – Cn everywhere – is:

Pn(x,α) =

⎧

⎨

⎩

1 for 0 ! x < α

1− e−
1−α

x−α (1−
x−α

1−α )
n

for α ! x < 1
0 for x " 1

. (5)

We choose n = 3, such that the metric is C2 and the Rie-
mann curvature is C0. Moreover, for r " rb the curvature
profile equals kb such that there the metric describes ex-

actly a curved ΛCDM model (α parametrizes the transition
kc → kb). The central over- or under-density, determined by

curvature kc, is automatically compensated by a surround-
ing under- or over-dense shell. Hence rb, kc and α are the
free parameters relative to the non-Copernican feature.

Finally, on the past light cone of a central observer, t(z)
and r(z) are determined as a function of redshift z by the
differential equations for radial null geodesics, dt

dz = −1
(1+z)H∥

and dr
dz =

√
1−kr2

(1+z)a∥H∥
, where H∥ and a∥ are evaluated on the

light cone. The area (dA) and luminosity (dL) distances are
given by dA(z) = a⊥

(

t(z), r(z)
)

r(z), dL = (1 + z)2dA.

3 DATA & OBSERVABLES

H0: The local Hubble rate is obtained by measuring cos-
mological standard candles mostly within a redshift range
zmin ! z ! zmax which depends on the redshift volume that
is probed by a given experiment. We compare the observed
value to the theoretical quantity,

H0 =
c (zmax − zmin)

∫ zmax

zmin
dL(z)/[z + 1

2 (1− q0)z2]dz
, (6)

where the deceleration parameter at the centre q0 =
Ωm(0)/2−ΩΛ(0) is used to expand the luminosity distance
to the second order in redshift. The reason we compare an
averaged expansion rate to the data is because the observed
H0 in fact comes from averaging distances, so this should be
a fair comparison. We use the value measured by Riess et al.
(2011) ofHRiess = 73.8±2.4 kms−1 Mpc−1, with zmin = 0.01
and zmax = 0.1. One could be tempted to say that modern
cosmic-microwave-background (CMB) data constrain H0 al-
ready sufficiently without the inclusion of the astrophysical
data that we discuss here. However, it is crucial to realise
that only in a purely homogeneous universe, these two mea-
surements measure the same quantity. When considering the
non-Copernican feature at hand, the expansion rate varies
spatially and hence a model can predict different values for
the local astrophysical H0 (local expansion rate) and the
CMB H0 (the age of the universe and inferred from it the
global expansion rate today).
Supernovae Ia: We use the SNLS3 catalogue (Guy et al.
2010), which consists of 472 type Ia supernovae in the red-
shift range z = 0.01−1.39. We include two nuisance param-
eters describing stretch-luminosity and colour-luminosity re-
lationships, as in Guy et al. (2010).
CMB: We fit the CMB according to the method presented
in Moss et al. (2011); Biswas et al. (2010), in which an effec-
tive FLRW metric is used to account for the different area
distance to the surface of last scattering as compared to
the homogeneous background model. This method ignores
isocurvature modes (consistent with the choice of a homoge-
neous big bang), assumes a standard number of relativistic
degrees of freedom and a standard power spectrum, all of
which would change the constraints (Clarkson 2012). More-
over, we assume that the late-time integrated Sachs-Wolfe
effect is not affected by the presence of the inhomogeneity,
as the latter will turn out to be of a magnitude such that it
can be described as linear perturbations on an FLRW met-
ric (see the discussion below about the kSZ observable). We
fit our model to WMAP 7-year data (Komatsu et al. 2011).
Baryon Acoustic Oscillations (BAO): The sound hori-
zon at the time of the drag epoch td is imprinted in the
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averaged expansion rate to the data is because the observed
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homogeneous background which predicts a mass M̄(L) inside the same radius
L. Then the probability of having such a structure is [30],
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Since the study of Dark Energy entails mainly a search for a redshift depen-
dent e�ect, it is a search for a radially dependent e�ect in a spherical coordinate
system with the observer at the origin. The observer hence averages over all
angles, which is equivalent to expanding the full matter field in spherical har-
monics, and throwing away all other information than the radially dependent
monopole. This should be a reasonable approximation as long as distance mea-
surements are averaged over angles in analyses of the dark energy equation of
state. Hence we model the inhomogeneity spherically symmetric and the mass
is given by M(r) © 4fi
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3. Model for local inhomogeneity

To model the inhomogeneity averaged over angular directions, we adopt the
spherically symmetric Lemaître-Tolman-Bondi solution [32, 33, 34] including a
cosmological constant � (�LTB, see e.g. [11, 35, 36, 15]), for which we can
compute all distance measures exactly. The use of the exact LTB model allows
us to deal with nonlinear inhomogeneities, which will be encountered at small
radii or low redshifts (their contrast is of the order of ‡

L

). Structures of larger
radii could have been equally well modeled using linear theory.

The �LTB metric in the comoving and synchronous gauge can be written
as (using units for which c = 1)
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where the longitudinal (aÎ) and perpendicular (a‹) scale factors are related
by aÎ = (a‹r)Õ, and a prime denotes partial derivation with respect to the
coordinate radius r. In the limit k æ const., and a‹ = aÎ we recover the FLRW
metric, but in a LTB metric the curvature k(r) is a free function and in general
is not constant.

The two scale factors define two di�erent Hubble rates:
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P (”
0

|L) = 1
‡

L

Ô
2fi

e
≠

”

2
0

2 ‡

2
L . (2)

Since the study of Dark Energy entails mainly a search for a redshift depen-
dent e�ect, it is a search for a radially dependent e�ect in a spherical coordinate
system with the observer at the origin. The observer hence averages over all
angles, which is equivalent to expanding the full matter field in spherical har-
monics, and throwing away all other information than the radially dependent
monopole. This should be a reasonable approximation as long as distance mea-
surements are averaged over angles in analyses of the dark energy equation of
state. Hence we model the inhomogeneity spherically symmetric and the mass
is given by M(r) © 4fi

s
r

0

dr
Ô

≠gfl
m

(r) with g the determinant of the metric.

3. Model for local inhomogeneity

To model the inhomogeneity averaged over angular directions, we adopt the
spherically symmetric Lemaître-Tolman-Bondi solution [32, 33, 34] including a
cosmological constant � (�LTB, see e.g. [11, 35, 36, 15]), for which we can
compute all distance measures exactly. The use of the exact LTB model allows
us to deal with nonlinear inhomogeneities, which will be encountered at small
radii or low redshifts (their contrast is of the order of ‡

L

). Structures of larger
radii could have been equally well modeled using linear theory.
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for ΛLTB solutions,  
see Valkenburg, GERG(2012)
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Figure 3. The 68%, 95% and 99.7% confidence-level proba-
bilities of log-normally distributed matter fluctuations (right
vertical axis) and consequently of the local Hubble parameter
(left vertical axis), as a function of co-moving size of the mat-
ter fluctuation (top ticks) or, equivalently, redshift (bottom
ticks). As in Fig. 2 we show the 1-‡ band relative to the value
H local

0

/HCMB

0

≠ 1.

which has zero mean, variance ‡2

R and support (≠1, Œ]
– in agreement with the fact that ”fl/fl > ≠1. More-
over, for ‡R æ 0 it approaches the gaussian distribution
of Eq. (3). In Fig. 3 we show the 68%, 95% and 99.7%
confidence level fluctuations of the local Hubble param-
eter induced by log-normally distributed matter pertur-
bations. We show separately the case for both over- and
under-densities as they are no longer symmetric when
using a skewed distribution such as Eq. (4). Using the
log-normal distribution, we see that local voids at a low
redshift are actually more likely than they would appear
from a gaussian distribution. From here on, we will use
the superscripts +, ≠ to refer to the distinct distributions
of positive and negative perturbations and their proper-
ties, in particular the mean systematic error ‡±

H
0

. For
the symmetric gaussian distribution we of course have
‡+

H
0

= ‡≠
H

0

.
Discussion In order to estimate the mean system-

atic error on local determinations of the Hubble constant
we average the 68% confidence level on ”H/H over the
survey range:

‡±
H

0

=
Cˆ z

max

z
min

dz W
SN

(z)
3

”H±

H

4
2

D 1

2

. (5)

In the equation above, the quantity W
SN

(z) represents
the redshift distribution of the SNe used in [2], which is
peaked at the lower redshifts. It is important to stress at

this point that we are assuming that the SNe are isotrop-
ically distributed over the sky. This implies that we are
neglecting the e�ect of the anisotropic distribution of the
sources, which could increase sizably the magnitude of
the cosmic variance. We list in Table I the numerical
values of Eq. (5) for combinations of cases where either
the gaussian distribution of Eq. (3) or the skewed log-
normal distribution of Eq. (4) is used.

As ”H/H is naturally larger at lower redshift, the value
of ‡H

0

depends strongly on W
SN

(z) and, in particular,
on z

min

and z
max

. If one were to extend the upper range
z

max

then the cosmic variance ‡H
0

could be reduced at
the cost that the uncertainty in the values of the cos-
mological parameters �

m

, �
�

, negligible in the current
analysis, would begin to play a role. Alternatively, one
could reduce the e�ect of the cosmic variance by increas-
ing the lower cuto� z

min

. As discussed earlier, Ref. [23]
claims that the expansion rate estimated from SNe within
74h≠1Mpc (corresponding approximately to z = 0.023)
is 6.5% ± 1.8% larger than the one measured from SNe
outside this region. Consequently, one can alleviate the
Hubble bubble e�ect by adopting z

min

= 0.023 [2]. In
Table I, we also show the values of ‡H

0

corresponding to
this choice. The median redshift of the SN redshift dis-
tribution is z

median

ƒ 0.025 if z
min

= 0.010 is used, and
z

median

ƒ 0.033 if z
min

= 0.023 is adopted instead. Also,
from Figures 2 and 3 one can see that this mismatch of
6.5% can be explained by a local inhomogeneity in agree-
ment with the standard model at about 2‡R.

It is now natural to ask how much this additional er-
ror from the cosmic variance of our local gravitational
potential can relieve the tension of 9% between the cen-
tral values of the two observations discussed at the be-
ginning. Before proceeding, however, we should point
out that Ref. [2] besides limiting in most of the anal-
ysis the sample to z

min

= 0.023, also tries to address
the cosmic variance uncertainty by correcting each SN
Ia on the Hubble diagram for the expected perturbation
of its redshift as determined from the IRAS PSCz den-
sity field [41], in particular by adopting the model B05
of Ref. [8]. The result of this velocity correction causes
the final value of H

0

to decrease by 0.5% ± 0.1%. While
this approach is in our opinion the right way to proceed
so as to deal with the cosmic variance, in light of the
tension between HCMB

0

and H local

0

and the uncertainties
in the model of Ref. [8],3 we think it is worth consider-
ing the case in which one does not use the results of [8]
and more conservatively estimates the variance stemming

3 The analysis of [8] depends on the estimate of the bias, assumes
a linear relation between velocities and galaxy counts, and is
a�ected by the selection function of the IRAS PSCz density field
which drops o� at larger scales. Also, the model B05 of [8] cannot
explain the Hubble bubble detected by [23], which we mentioned
at the beginning.
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• But do we really? 

• Yes: CMB.  

• But CMB is not here. It is at z=1100.  
(Same reasoning for Pgg(k))
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Figure 1. Marginalized constraints on rb and �0 from di↵er-

ent combinations of data: “C” refers to CMB, “R” to H0, “B”
to BAO, “S” to SN, “A” to absolute age data, “a” to age data

used as lower bound only, “K” to kSZ, “Y” to Compton-y dis-

tortion. The strongest constraints at low redshifts come from SN,
while the strongest constraint on �0 on large scales seems to come

from kSZ. Naturally all datasets combined give the strongest con-

straints. See Fig. 2 for a comparison of the CRBSaKY plot to the
Copernican prior.

background, and g the determinant of the metric (1). A sim-
ilar function has been used by Hunt & Sarkar (2010) to com-
pute the probability of having a large void in an Einstein-de
Sitter universe, so large that the need for a cosmological
constant vanishes (which is not the case considered here).

4 ANALYSIS

We explore a 14-dimensional parameter space using Cos-

moMC (Lewis & Bridle 2002): four parameters describing
the inhomogeneity including an overall curvature term (kb),
the ratio of baryons to dark matter, the cosmological con-
stant, the optical depth to the surface of last scattering, the
age of the universe, three spectral parameters for the CMB
(scalar amplitude, tilt and running of the tilt), the amplitude
of a thermal SZ template that is used for the CMB spectrum
and the two SN nuisance parameters. We calculate cosmic
distances using VoidDistancesII (Marra et al. 2012), and
compute the corrected CMB spectrum using CAMB (Lewis
et al. 2000).

5 RESULTS

We present our results in terms of the non-Copernican pa-
rameters �0 and rb, marginalizing over all other aforemen-
tioned parameters. In Fig. 1 we show the constraints on the
non-Copernican parameters from a number of possible com-
binations of datasets, ordered by constraining power. In all
cases we use the CMB constraints in combination with at
least one other dataset. Not surprisingly, all datasets com-
bined provide the strongest constraints, only allowing for a
narrow range of contrasts, however for many radii.
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Figure 2. Marginalized posterior probability of L and �0 from all

data sets combined (blue contours, closely related to CRBSaKY
in Fig. 1, albeit with a slightly di↵erent quantity on the vertical

axis, L in stead of rb) at 68%, 95% and 99% confidence level (c.l.),

compared to the Copernican posterior obtained by fitting CMB
only while imposing the Copernican prior, (red to gray coloring)

at 68%, 95% and 99% c.l. The ratio of the areas of the 99%-c.l.

surfaces is roughly a factor of three. The allowed area needs to
be reduced by a factor of three so as to confirm the Copernican

principle. The marginalized 95% c.l. limits on the contrast are

�0.29 < �0 < 0.14 for CRBSaKY and �0.12 < �0 < 0.12 for the
Copernican prior.

The key result of this paper is shown in Fig. 2, where
we compare the posterior probability from all datasets to
a posterior which is the Copernican prior convolved with
the CMB likelihood. We find that the area of constraints
on L and �0 needs to decrease by a factor of three to con-
firm the Copernican principle, because then observations on
the lightcone constrain inhomogeneity to within the range
allowed for by the CMB power spectrum.

Finally, in Fig. 3 we show for the first time constraints
on the cosmological constant, ⇤, marginalized over the ef-
fect of inhomogeneities around us, compared to the same
constraints without taking into account inhomogeneity. We
find that error bars increase by 15% if one marginalizes over
inhomogeneity.

The analysis regarding the constraints from H0, SNe,
BAO and kSZ uses data and results that have been obtained
assuming, at some point, an FLRW framework. While we
correctly used the processed data so as to compare it with
the inhomogeneous universe, in principle one should con-
front to data that is as close to raw as possible. While this
caveat should be kept in mind when interpreting our results,
we do not expect the analysis to be sizably biased because
the inhomogeneous universe we are considering does not de-
part strongly from its FLRW background, as shown by the
results of Fig. 2.

Our constraints depend on a variety of assumptions, in
particular that dark energy is described by a cosmological
constant (Marra et al. 2012; Ben-Dayan et al. 2013) and that
general relativity is the correct theory of gravity. Our con-
straints apply to inhomogeneity which arise at late times,
and do not apply to possible non-Copernican properties at

c� 0000 RAS, MNRAS 000, 000–000

From WMAP’s CMB: 
temperature 
fluctuations predict 
probability of density 
perturbation today

Valkenburg, Marra, Clarkson, MNRASL (2013)

Fitting a cosmology with Ωm, ΩΛ, H0, As, ns, τ, L, δ0 
give expected L and δ0 17
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Figure 1. Marginalized constraints on rb and �0 from di↵er-

ent combinations of data: “C” refers to CMB, “R” to H0, “B”
to BAO, “S” to SN, “A” to absolute age data, “a” to age data

used as lower bound only, “K” to kSZ, “Y” to Compton-y dis-

tortion. The strongest constraints at low redshifts come from SN,
while the strongest constraint on �0 on large scales seems to come

from kSZ. Naturally all datasets combined give the strongest con-

straints. See Fig. 2 for a comparison of the CRBSaKY plot to the
Copernican prior.

background, and g the determinant of the metric (1). A sim-
ilar function has been used by Hunt & Sarkar (2010) to com-
pute the probability of having a large void in an Einstein-de
Sitter universe, so large that the need for a cosmological
constant vanishes (which is not the case considered here).

4 ANALYSIS

We explore a 14-dimensional parameter space using Cos-

moMC (Lewis & Bridle 2002): four parameters describing
the inhomogeneity including an overall curvature term (kb),
the ratio of baryons to dark matter, the cosmological con-
stant, the optical depth to the surface of last scattering, the
age of the universe, three spectral parameters for the CMB
(scalar amplitude, tilt and running of the tilt), the amplitude
of a thermal SZ template that is used for the CMB spectrum
and the two SN nuisance parameters. We calculate cosmic
distances using VoidDistancesII (Marra et al. 2012), and
compute the corrected CMB spectrum using CAMB (Lewis
et al. 2000).

5 RESULTS

We present our results in terms of the non-Copernican pa-
rameters �0 and rb, marginalizing over all other aforemen-
tioned parameters. In Fig. 1 we show the constraints on the
non-Copernican parameters from a number of possible com-
binations of datasets, ordered by constraining power. In all
cases we use the CMB constraints in combination with at
least one other dataset. Not surprisingly, all datasets com-
bined provide the strongest constraints, only allowing for a
narrow range of contrasts, however for many radii.
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Figure 2. Marginalized posterior probability of L and �0 from all

data sets combined (blue contours, closely related to CRBSaKY
in Fig. 1, albeit with a slightly di↵erent quantity on the vertical

axis, L in stead of rb) at 68%, 95% and 99% confidence level (c.l.),

compared to the Copernican posterior obtained by fitting CMB
only while imposing the Copernican prior, (red to gray coloring)

at 68%, 95% and 99% c.l. The ratio of the areas of the 99%-c.l.

surfaces is roughly a factor of three. The allowed area needs to
be reduced by a factor of three so as to confirm the Copernican

principle. The marginalized 95% c.l. limits on the contrast are

�0.29 < �0 < 0.14 for CRBSaKY and �0.12 < �0 < 0.12 for the
Copernican prior.

The key result of this paper is shown in Fig. 2, where
we compare the posterior probability from all datasets to
a posterior which is the Copernican prior convolved with
the CMB likelihood. We find that the area of constraints
on L and �0 needs to decrease by a factor of three to con-
firm the Copernican principle, because then observations on
the lightcone constrain inhomogeneity to within the range
allowed for by the CMB power spectrum.

Finally, in Fig. 3 we show for the first time constraints
on the cosmological constant, ⇤, marginalized over the ef-
fect of inhomogeneities around us, compared to the same
constraints without taking into account inhomogeneity. We
find that error bars increase by 15% if one marginalizes over
inhomogeneity.

The analysis regarding the constraints from H0, SNe,
BAO and kSZ uses data and results that have been obtained
assuming, at some point, an FLRW framework. While we
correctly used the processed data so as to compare it with
the inhomogeneous universe, in principle one should con-
front to data that is as close to raw as possible. While this
caveat should be kept in mind when interpreting our results,
we do not expect the analysis to be sizably biased because
the inhomogeneous universe we are considering does not de-
part strongly from its FLRW background, as shown by the
results of Fig. 2.

Our constraints depend on a variety of assumptions, in
particular that dark energy is described by a cosmological
constant (Marra et al. 2012; Ben-Dayan et al. 2013) and that
general relativity is the correct theory of gravity. Our con-
straints apply to inhomogeneity which arise at late times,
and do not apply to possible non-Copernican properties at
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to BAO, “S” to SN, “A” to absolute age data, “a” to age data

used as lower bound only, “K” to kSZ, “Y” to Compton-y dis-

tortion. The strongest constraints at low redshifts come from SN,
while the strongest constraint on �0 on large scales seems to come

from kSZ. Naturally all datasets combined give the strongest con-

straints. See Fig. 2 for a comparison of the CRBSaKY plot to the
Copernican prior.

background, and g the determinant of the metric (1). A sim-
ilar function has been used by Hunt & Sarkar (2010) to com-
pute the probability of having a large void in an Einstein-de
Sitter universe, so large that the need for a cosmological
constant vanishes (which is not the case considered here).

4 ANALYSIS

We explore a 14-dimensional parameter space using Cos-

moMC (Lewis & Bridle 2002): four parameters describing
the inhomogeneity including an overall curvature term (kb),
the ratio of baryons to dark matter, the cosmological con-
stant, the optical depth to the surface of last scattering, the
age of the universe, three spectral parameters for the CMB
(scalar amplitude, tilt and running of the tilt), the amplitude
of a thermal SZ template that is used for the CMB spectrum
and the two SN nuisance parameters. We calculate cosmic
distances using VoidDistancesII (Marra et al. 2012), and
compute the corrected CMB spectrum using CAMB (Lewis
et al. 2000).

5 RESULTS

We present our results in terms of the non-Copernican pa-
rameters �0 and rb, marginalizing over all other aforemen-
tioned parameters. In Fig. 1 we show the constraints on the
non-Copernican parameters from a number of possible com-
binations of datasets, ordered by constraining power. In all
cases we use the CMB constraints in combination with at
least one other dataset. Not surprisingly, all datasets com-
bined provide the strongest constraints, only allowing for a
narrow range of contrasts, however for many radii.
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in Fig. 1, albeit with a slightly di↵erent quantity on the vertical

axis, L in stead of rb) at 68%, 95% and 99% confidence level (c.l.),
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surfaces is roughly a factor of three. The allowed area needs to
be reduced by a factor of three so as to confirm the Copernican

principle. The marginalized 95% c.l. limits on the contrast are

�0.29 < �0 < 0.14 for CRBSaKY and �0.12 < �0 < 0.12 for the
Copernican prior.

The key result of this paper is shown in Fig. 2, where
we compare the posterior probability from all datasets to
a posterior which is the Copernican prior convolved with
the CMB likelihood. We find that the area of constraints
on L and �0 needs to decrease by a factor of three to con-
firm the Copernican principle, because then observations on
the lightcone constrain inhomogeneity to within the range
allowed for by the CMB power spectrum.

Finally, in Fig. 3 we show for the first time constraints
on the cosmological constant, ⇤, marginalized over the ef-
fect of inhomogeneities around us, compared to the same
constraints without taking into account inhomogeneity. We
find that error bars increase by 15% if one marginalizes over
inhomogeneity.

The analysis regarding the constraints from H0, SNe,
BAO and kSZ uses data and results that have been obtained
assuming, at some point, an FLRW framework. While we
correctly used the processed data so as to compare it with
the inhomogeneous universe, in principle one should con-
front to data that is as close to raw as possible. While this
caveat should be kept in mind when interpreting our results,
we do not expect the analysis to be sizably biased because
the inhomogeneous universe we are considering does not de-
part strongly from its FLRW background, as shown by the
results of Fig. 2.

Our constraints depend on a variety of assumptions, in
particular that dark energy is described by a cosmological
constant (Marra et al. 2012; Ben-Dayan et al. 2013) and that
general relativity is the correct theory of gravity. Our con-
straints apply to inhomogeneity which arise at late times,
and do not apply to possible non-Copernican properties at
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DESY 13-091

The value of H
0

in the inhomogeneous Universe

Ido Ben-Dayan1, Ruth Durrer2, Giovanni Marozzi2 and Dominik J. Schwarz3
1Deutsches Elektronen-Synchrotron DESY, Theory Group, D-22603 Hamburg, Germany

2Université de Genève, Département de Physique Théorique and CAP,
24 quai Ernest-Ansermet, CH-1211 Genève 4, Switzerland

3Fakultät für Physik, Universität Bielefeld, Postfach 100131, 33501 Bielefeld, Germany
(Dated: February 6, 2014)

Local measurements of the Hubble expansion rate are a↵ected by structures like galaxy clusters
or voids. Here we present a first fully relativistic treatment of this e↵ect, studying how clustering
modifies the mean distance (modulus)-redshift relation and its dispersion. The best estimates of
the local expansion rate stem from supernova observations at small redshifts (0.01 < z < 0.1). It
is interesting to compare these local measurements with global fits to data from cosmic microwave
background anisotropies. In particular, we argue that cosmic variance (i.e. the e↵ects of the local
structure) is of the same order of magnitude as the current observational errors and must be taken
into account in all future local measurements of the Hubble expansion rate.

PACS numbers: 98.80.-k, 95.36.+x, 98.80.Es

The Hubble constant, H0, determines the present ex-
pansion rate of the Universe. For most cosmological phe-
nomena a precise knowledge of H0 is of utmost impor-
tance. In a perfectly homogeneous and isotropic world
H0 is defined globally. But the Universe contains struc-
tures like galaxy clusters and voids. Thus the local ex-
pansion rate, measured by means of cepheids and su-
pernovae at small redshifts, does not necessarily agree
with the expansion rate of an isotropic and homogeneous
model that is used to describe the Universe at the largest
scales.

Recent local measurements of the Hubble rate [1, 2] are
claimed to be accurate at the few percent level, e.g. [1]
finds H0 = (73.8 ± 2.4) km s�1Mpc�1. In the near fu-
ture, observational techniques will improve further, such
that the local value of H0 will be determined at 1% accu-
racy [3], competitive with the current precision of indirect
measurements of the global H0 via the cosmic microwave
backgound anisotropies [4].

The observed distance modulus µ is related to the
bolometric flux � and the luminosity distance dL by
(log ⌘ log10)

µ = �2.5 log[�/�10 pc] = 5 log[dL/(10 pc)]. (1)

The relation between the intrinsic luminosity, L, the
bolometric flux, �, and the luminosity distance dL of
a source is � = L/4⇡d2L. In a flat ⇤CDM universe with
present matter density parameter ⌦m the luminosity dis-
tance as a function of redshift z is then given by

dL(z) =
1 + z

H0/c

Z z

0

dz0p
⌦m(1 + z0)3 + 1� ⌦m

. (2)

As long as we consider only small redshifts, z  0.1, the
dependence on cosmology is weak, dL(z) ' c[z + (1 �
3⌦m/4)z2]/H0 and the result varies by about 0.2% when
⌦m varies within the 2� error bars determined by Planck

[4]. However, neglecting the model dependent quadratic
term entirely induces an error of nearly 8% for z ' 0.1.

The observed Universe is inhomogeneous and
anisotropic on small scales and the local Hubble rate
is actually expected to di↵er from its global value
for two reasons. First, any supernova (SN) sample is
finite (sample variance) and, second, we observe only
one realization of a random configuration of the local
structure (cosmic variance). Thus, even for arbitrarily
precise measurements of fluxes and redshifts, the local
H0 will di↵er from the global H0. Sample variance is
fully taken into account in the literature, but cosmic
variance is usually not considered.

In the context of Newtonian cosmology, cosmic vari-
ance of the local H0 has been estimated in [5–7]. First
attempts to estimate cosmic variance of the local Hub-
ble rate in a relativistic approach can be found in [8, 9]
(see also [10]), they are based on the idea of calculat-
ing the ensemble variance of the spatial volume averaged
expansion rate. It has been shown that this approach
agrees very well with the Newtonian one [8] and it pre-
dicts a sampling volume dependent cosmic variance from
the sub-per cent to per cent level. However, this approach
still ignores that observers probe the past light-cone and
not a spatial volume. Also, the measured quantity is
not an expansion rate, but the bolometric flux with the
redshift.

In this letter, we present the first fully relativistic es-
timation of the e↵ects of clustering on the local Hubble
parameter. In particular, considering only the directly
measured quantities, we study the e↵ect of a stochastic
background of inhomogeneities on the determination of
H0 performed using local measurements, i.e., taking light
propagation e↵ects fully into account. Let us stress that
we do not make any special hypothesis about how the
fluctuations are distributed around us, unlike [11, 12],
where a ”Swiss cheese” model and a ”Hubble bubble”
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One step further
• So far looked at full angular average. But no 

observer sees infinitely many sources.

• Take into account poisson noise from individual 
candles:
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Local measurements of the Hubble expansion rate are a↵ected by structures like galaxy clusters
or voids. Here we present a first fully relativistic treatment of this e↵ect, studying how clustering
modifies the mean distance (modulus)-redshift relation and its dispersion. The best estimates of
the local expansion rate stem from supernova observations at small redshifts (0.01 < z < 0.1). It
is interesting to compare these local measurements with global fits to data from cosmic microwave
background anisotropies. In particular, we argue that cosmic variance (i.e. the e↵ects of the local
structure) is of the same order of magnitude as the current observational errors and must be taken
into account in all future local measurements of the Hubble expansion rate.
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The Hubble constant, H0, determines the present ex-
pansion rate of the Universe. For most cosmological phe-
nomena a precise knowledge of H0 is of utmost impor-
tance. In a perfectly homogeneous and isotropic world
H0 is defined globally. But the Universe contains struc-
tures like galaxy clusters and voids. Thus the local ex-
pansion rate, measured by means of cepheids and su-
pernovae at small redshifts, does not necessarily agree
with the expansion rate of an isotropic and homogeneous
model that is used to describe the Universe at the largest
scales.

Recent local measurements of the Hubble rate [1, 2] are
claimed to be accurate at the few percent level, e.g. [1]
finds H0 = (73.8 ± 2.4) km s�1Mpc�1. In the near fu-
ture, observational techniques will improve further, such
that the local value of H0 will be determined at 1% accu-
racy [3], competitive with the current precision of indirect
measurements of the global H0 via the cosmic microwave
backgound anisotropies [4].

The observed distance modulus µ is related to the
bolometric flux � and the luminosity distance dL by
(log ⌘ log10)

µ = �2.5 log[�/�10 pc] = 5 log[dL/(10 pc)]. (1)

The relation between the intrinsic luminosity, L, the
bolometric flux, �, and the luminosity distance dL of
a source is � = L/4⇡d2L. In a flat ⇤CDM universe with
present matter density parameter ⌦m the luminosity dis-
tance as a function of redshift z is then given by

dL(z) =
1 + z

H0/c

Z z

0

dz0p
⌦m(1 + z0)3 + 1� ⌦m

. (2)

As long as we consider only small redshifts, z  0.1, the
dependence on cosmology is weak, dL(z) ' c[z + (1 �
3⌦m/4)z2]/H0 and the result varies by about 0.2% when
⌦m varies within the 2� error bars determined by Planck

[4]. However, neglecting the model dependent quadratic
term entirely induces an error of nearly 8% for z ' 0.1.

The observed Universe is inhomogeneous and
anisotropic on small scales and the local Hubble rate
is actually expected to di↵er from its global value
for two reasons. First, any supernova (SN) sample is
finite (sample variance) and, second, we observe only
one realization of a random configuration of the local
structure (cosmic variance). Thus, even for arbitrarily
precise measurements of fluxes and redshifts, the local
H0 will di↵er from the global H0. Sample variance is
fully taken into account in the literature, but cosmic
variance is usually not considered.

In the context of Newtonian cosmology, cosmic vari-
ance of the local H0 has been estimated in [5–7]. First
attempts to estimate cosmic variance of the local Hub-
ble rate in a relativistic approach can be found in [8, 9]
(see also [10]), they are based on the idea of calculat-
ing the ensemble variance of the spatial volume averaged
expansion rate. It has been shown that this approach
agrees very well with the Newtonian one [8] and it pre-
dicts a sampling volume dependent cosmic variance from
the sub-per cent to per cent level. However, this approach
still ignores that observers probe the past light-cone and
not a spatial volume. Also, the measured quantity is
not an expansion rate, but the bolometric flux with the
redshift.

In this letter, we present the first fully relativistic es-
timation of the e↵ects of clustering on the local Hubble
parameter. In particular, considering only the directly
measured quantities, we study the e↵ect of a stochastic
background of inhomogeneities on the determination of
H0 performed using local measurements, i.e., taking light
propagation e↵ects fully into account. Let us stress that
we do not make any special hypothesis about how the
fluctuations are distributed around us, unlike [11, 12],
where a ”Swiss cheese” model and a ”Hubble bubble”
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Summary
• H0 is not what is seems 

• Age of universe (distance to CMB) is not same as 
local expansion rate 

• Local expansion rate subject to local physics 

• Effect quantified: extra 
1% with known P(k)@r=0 + infinite observation #,  
3% with no known P(k)@r=0 but use LTB constraints 
5% with known P(k)@r=0 + current H0 observation #
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