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The Universe is accelerating!
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Beyond the Cosmological Constant...

Naturalness problem (perhaps             is better than                         ) 

Coincidence problem (why                  now?!).

Λ = 0 Λ ∼ (10−3eV)4

ρDE ∼ ρM
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DATA...? 

Planck Collaboration: Cosmological parameters
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Fig. 34. Marginalized posterior distributions for the dark en-
ergy equation of state parameter w (assumed constant), for
Planck+WP alone (green) and in combination with SNe data
(SNSL in blue and the Union2.1 compilation in red) or BAO
data (black). A flat prior on w from −3 to −0.3 was as-
sumed and, importantly for the CMB-only constraints, the prior
[20, 100] km s−1 Mpc−1 on H0. The dashed grey line indicates
the cosmological constant solution, w = −1.

which is in tension with w = −1 at more than the 2σ level.
The results in Eqs. (91–93) reflect the tensions between the

supplementary data sets and the Planck base ΛCDM cosmology
discussed in Sect. 5. The BAO data are in excellent agreement
with the Planck base ΛCDM model, so there is no significant
preference for w � −1 when combining BAO with Planck. In
contrast, the addition of the H0 measurement, or SNLS SNe data,
to the CMB data favours models with exotic physics in the dark
energy sector. These trends form a consistent theme throughout
this section. The SNLS data favours a lower Ω in the ΛCDM
model than Planck, and hence larger dark energy density today.
The tension can be relieved by making the dark energy fall away
faster in the past than for a cosmological constant, i.e., w < −1.

The constant w models are of limited physical interest. If
w � −1 then it is likely to change with time. To investigate
this we consider the simple linear relation in Eq. (4), w(a) =
w0 + wa(1 − a), which has often been used in the literature
(Chevallier & Polarski 2001; Linder 2003). This parameteriza-
tion approximately captures the low-redshift behaviour of light,
slowly-rolling minimally-coupled scalar fields (as long as they
do not contribute significantly to the total energy density at early
times) and avoids the complexity of scanning a large number of
possible potential shapes and initial conditions. The dynamical
evolution of w(a) can lead to distinctive imprints in the CMB
(Caldwell et al. 1998) which would show up in the Planck data.

Figure 35 shows contours of the joint posterior distribution in
the w0–wa plane using Planck+WP+BAO data (colour-coded ac-
cording to the value of H0). The points are coloured by the value
of H0, which shows a clear variation with w0 and wa reveal-
ing the three-dimensional nature of the geometric degeneracy in
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Fig. 35. 2D marginalized posterior distribution for w0 and wa

for Planck+WP+BAO data. The contours are 68% and 95%,
and the samples are colour-coded according to the value of H0.
Independent flat priors of −3 < w0 < −0.3 and −2 < wa < 2
are assumed. Dashed grey lines show the cosmological constant
solution w0 = −1 and wa = 0.

such models. The cosmological constant point (w0,wa) = (−1, 0)
lies within the 68% contour and the marginalized posteriors for
w0 and wa are

w0 = −1.04+0.72
−0.69 (95%; Planck+WP+BAO), (94a)

wa < 1.32 (95%; Planck+WP+BAO). (94b)

Including the H0 measurement in place of the BAO data moves
(w0,wa) away from the cosmological constant solution towards
negative wa at just under the 2σ level.

Figure 36 shows likelihood contours for (w0,wa), now
adding SNe data to Planck. As discussed in detail in Sect. 5,
there is a dependence of the base ΛCDM parameters on the
choice of SNe data set, and this is reflected in Fig. 36. The re-
sults from the Planck+WP+Union2.1 data combination are in
better agreement with a cosmological constant than those from
the Planck+WP+SNLS combination. For the latter data combi-
nation, the cosmological constant solution lies on the 2σ bound-
ary of the (w0,wa) distribution.

Dynamical dark energy models might also give a non-
negligible contribution to the energy density of the Universe
at early times. Such early dark energy (EDE; Wetterich 2004)
models may be very close to ΛCDM recently, but have a non-
zero dark energy density fraction, Ωe, at early times. Such mod-
els complement the (w0,wa) analysis by investigating how much
dark energy can be present at high redshifts. EDE has two main
effects: it reduces structure growth in the period after last scat-
tering; and it changes the position and height of the peaks in the
CMB spectrum.

The model we adopt here is that of Doran & Robbers (2006):

Ωde(a) =
Ω0

de −Ωe(1 − a
−3w0 )

Ω0
de +Ω

0
ma3w0

+Ωe(1 − a
−3w0 ) . (95)

It requires two additional parameters to those of the baseΛCDM
model: Ωe, the dark energy density relative to the critical den-
sity at early times (assumed constant in this treatment); and the
present-day dark energy equation of state parameter w0. HereΩ0

m
is the present matter density andΩ0

de = 1−Ω0
m is the present dark
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Fig. 32. 2D joint posterior distribution for Neff and YP with both
parameters varying freely, determined from Planck+WP+highL
data. Samples are colour-coded by the value of the angular ra-
tio θD/θ∗, which is constant along the degeneracy direction. The
Neff–YP relation from BBN theory is shown by the dashed curve.
The vertical line shows the standard value Neff = 3.046. The
region with YP > 0.294 is highlighted in grey, delineating the re-
gion that exceeds the 2σ upper limit of the recent measurement
of initial Solar helium abundance (Serenelli & Basu 2010), and
the blue horizontal region is the 68% confidence region from
the Aver et al. (2012) compilation of 4He measurements.

observationally-relevant angular ratio θD/θ∗ ∝ (kDr∗)−1. The
main constraint on Neff and YP comes from the precise measure-
ment of this ratio by the CMB, leaving the degeneracy along the
constant θD/θ∗ direction. The relation between Neff and YP from
BBN theory is shown in the figure by the dashed curve37. The
standard BBN prediction with Neff = 3.046 is contained within
the 68% confidence region. The grey region is for YP > 0.294
and is the 2σ conservative upper bound on the primordial he-
lium abundance from Serenelli & Basu (2010). Most of the sam-
ples are consistent with this bound. The inferred estimates of Neff
and YP from the Planck+WP+highL data are

Neff = 3.33+0.59
−0.83 (68%; Planck+WP+highL), (90a)

YP = 0.254+0.041
−0.033 (68%; Planck+WP+highL). (90b)

With YP allowed to vary, Neff is no longer tightly constrained
by the value of θD/θ∗. Instead, it is constrained, at least in part,
by the impact that varying Neff has on the phase shifts of the
acoustic oscillations. As discussed in Hou et al. (2012), this ef-
fect explains the observed correlation between Neff and θ∗, which
is shown in Fig. 33. The correlation in the ΛCDM+Neff model
is also plotted in the figure showing that the Neff–YP degeneracy
combines with the phase shifts to generate a larger dispersion in
θ∗ in such models.

6.5. Dark energy

A major challenge for cosmology is to elucidate the nature of the
dark energy driving the accelerated expansion of the Universe.
Perhaps the most straightforward explanation is that dark en-
ergy is a cosmological constant. An alternative is dynamical dark

37For constant Neff , the variation due to the uncertainty in the baryon
density is too small to be visible, given the thickness of the curve.

Fig. 33. 2D joint posterior distribution between Neff and θ∗ for
ΛCDM models with variable Neff (blue) and variable Neff and YP
(red). Both cases are for Planck+WP+highL data.

energy (Wetterich 1988; Ratra & Peebles 1988; Caldwell et al.
1998), usually based on a scalar field. In the simplest models,
the field is very light, has a canonical kinetic energy term and
is minimally coupled to gravity. In such models the dark energy
sound speed equals the speed of light and it has zero anisotropic
stress. It thus contributes very little to clustering. We shall only
consider such models in this subsection.

A cosmological constant has an equation of state w ≡ p/ρ =
−1, while scalar field models typically have time varying w with
w ≥ −1. The analysis performed here is based on the “parameter-
ized post-Friedmann” (PPF) framework of Hu & Sawicki (2007)
and Hu (2008) as implemented in camb (Fang et al. 2008b,a) and
discussed earlier in Sect. 2. This allows us to investigate both re-
gions of parameter space in which w < −1 (sometimes referred
to as the “phantom” domain) and models in which w changes
with time.

Figure 34 shows the marginalized posterior distributions for
w for an extension of the baseΛCDM cosmology to models with
constant w. We present results for Planck+WP and in combi-
nation with SNe or BAO data. (Note that adding in the high-�
data from ACT and SPT results in little change to the posteriors
shown in Fig. 34.) As expected, the CMB alone does not strongly
constrain w, due to the two-dimensional geometric degeneracy
in these models. We can break this degeneracy by combining
the CMB data with lower redshift distance measures. Adding in
BAO data tightens the constraints substantially, giving

w = −1.13+0.24
−0.25 (95%; Planck+WP+BAO), (91)

in good agreement with a cosmological constant (w = −1).
Using supernovae data leads to the constraints

w = −1.09 ± 0.17 (95%; Planck+WP+Union2.1), (92a)
w = −1.13+0.13

−0.14 (95%; Planck+WP+SNLS), (92b)

The combination with SNLS data favours the phantom domain
(w < −1) at 2σ, while the Union2.1 compilation is more consis-
tent with a cosmological constant.

If instead we combine Planck+WP with the Riess et al.
(2011) measurement of H0, we find

w = −1.24+0.18
−0.19 (95%; Planck+WP+H0), (93)
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Beyond the Cosmological Constant...

DATA...? 

PAN-STARRS1   (1310.3828):    

SDSSII & SNLS   (1401.4064): 

Naturalness problem (perhaps             is better than                         ) 

Coincidence problem (why                  now?!).

Λ = 0 Λ ∼ (10−3eV)4

ρDE ∼ ρM

w = −1.02± 0.05

w = −1.18± 0.07

(talk by M. Betoule on friday)
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3

ζ0 ζ1 ρ χ2 1-PTE

-2.94±1.94 0.32±0.13 -0.72 1.34 0.99

-2.07±1.88 0.28±0.10 -0.70 3.31 0.86

TABLE II: Results from fits to the RSD data. The first line
of results is for the LRG60 data set, and the second line is for
LRG200. For each set, we present the best-fit values of the
gravitational slip at redshift 0 and 1 (ζ0 & ζ1). The uncer-
tainties are at the one-standard deviation level. The fiducial
value of both parameters in General Relativity is 0. We also
indicate the correlation coefficient ρ of the distribution of the
fit to these two parameters, the minimum χ2 of the fit and
corresponding Probability To Exceed (PTE).

We consider the χ2 statistic for the fits, given by

χ2 = (x− x̄)C−1(x− x̄) (2)

where x is a vector of observed values, x̄ is a vector of
corresponding values from a model for x, and C is the
covariance matrix for the data. We note that for both
data sets, the χ2 is substantially less than the 7 degrees
of freedom in the fit. We calculate the Probability To
Exceed (PTE) this χ2, under the assumption that the
uncertainties are indeed correctly estimated. The very
low PTE values suggest that either the uncertainties have
been over estimated, or genuine scatter in the measure-
ments is being systematically suppressed. While only ad-
ditional observations will determine whether this trend is
truly statistically significant, the results already in hand
appear to suggest that either the quoted uncertainties
have been overestimated, or the analysis is suppressing
genuine scatter in the measurements.
We note that the PTE decreases with the LRG200 data

set, since the LRG200 measurements have a larger scatter
than the LRG60 measurements. This is likely due to the
fact that most of the coherent clustering signal is due
to correlations on scales less than 100 h−1Mpc, so the
additional correlations are effectively adding noise to the
signal.
In most recent results, the uncertainties have been es-

timated from several hundred simulated realisations of
the survey, from which the uncertainty (and the covari-
ance between measurements, in the case of several red-
shift bins) can be deduced from the scatter in the re-
alisations. Although it may appear that the uncertain-
ties on the measurements have been overestimated, good
agreement between the quoted values and Fisher fore-
casts [e.g., 30] of the minimum intrinsic statistical uncer-
tainties suggests that this is not the case, although [21]
note that the uncertainties in the BOSS growth rate mea-
surements are around 40% larger than the Fisher matrix
predictions.
Perhaps the stage of an RSD analysis most likely to

introduce a systematic shift, and artificially reduce the
scatter, may be in fitting a model to the two-dimensional
two-point correlation function (or power spectrum). [17]
analysed simulated catalogues for the WiggleZ survey
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FIG. 1: Comparing models to recent measurements of
f(z)σ8(z). We are plotting results for the LRG200 data set.
The open markers are the original published values from the
RSD measurements, and the filled markers are after account-
ing for the Alcock-Paczynski effect in going from WMAP to
Planck cosmology. The measurement error bars are at the
1 standard deviation uncertainty level. The dashed red line
illustrates the expected growth rate from ΛCDM with Planck
parameters, with the 1 and 2 standard deviation uncertainty
illustrated with the shaded bands. The solid blue line and
corresponding blue shaded regions illustrates the best fit to
the RSD data with the gravitational slip model. We note
that almost all the measurements include our best fit model
at the 1 standard deviation uncertainty level, which is re-
flected in the low χ2 in Table II. The one standard deviation
range of the model (the darker blue band) is narrower than
the typical one standard deviation uncertainty on any of the
measurements because the fit has been calculated from the
several independent measurements.

with a range of models for the RSD effect, and found
that measurements of Ωm (which is directly sensitive to
the growth rate) were highly dependent on the model
used. In particular, the model of a HALOFIT [27] P (k)
with a linear model for the redshift space distortion re-
covered a lower Ωm compared to the fiducial value on
which the simulation was based.
The preference for a lower growth rate or σ8 appears

to agree with recent results from [20], studying Sunyaev-
Zeldovich (SZ) cluster counts, who find σ8 = 0.77± 0.02
and Ωm = 0.29 ± 0.02. Collectively, these results may
be suggesting that ΛCDM does not fully model simulta-
neously the Cosmic Microwave Background and the Uni-
verse at z < 1. However, future work will require detailed
work with simulated catalogues for a range of cosmolog-
ical models [e.g., 11, 12] and an improved understanding
of the relationship between the observed galaxies, the pe-
culiar velocity field, and the underlying dark matter [e.g.,
22, 26], before we can more robustly use RSD measure-
ments to study departures from ΛCDM.
We thank the two anonymous referees for useful com-

DATA...? 

Beyond the Cosmological Constant...

Naturalness problem (perhaps             is better than                         ) 

Coincidence problem (why                  now?!).

Λ = 0 Λ ∼ (10−3eV)4

ρDE ∼ ρM

Perturbation sector:
less growth than expected...?

See also Hiranya’s talk yesterday

Macaulay et al. ’13
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Beyond the Cosmological Constant... 

 There is a new propagating degree of freedom in the theory

DE �= Λ

φ
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• There is `no shortage’ of dark energy and modified gravity models         
(>5000 papers on Spires)

• EUCLID and BigBoss will be sensitive to dynamical properties of DE

• Need for a Unifying and Effective description of DE

• A limited number of effective operators, each one responsible for an 
observable dynamical feature (e.g. flavor-changing neutral currents in  
physics beyond Standard Model) 

Ideally... 
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• There is `no shortage’ of dark energy and modified gravity models         
(>5000 papers on Spires)

• EUCLID and BigBoss will be sensitive to dynamical properties of DE

• Need for a Unifying and Effective description of DE

• A limited number of effective operators, each one responsible for an 
observable dynamical feature (e.g. flavor-changing neutral currents in  
physics beyond Standard Model) 

Ideally... 

S[φ, gµν ,Ψm]

Background

φ = φ0(t)

ds2 =− dt2 + a2(t)dx2

ρm = ρm(t)

Expand in perturbations

δρm(t, �x) δφ(t, �x)
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• There is `no shortage’ of dark energy and modified gravity models         
(>5000 papers on Spires)

• EUCLID and BigBoss will be sensitive to dynamical properties of DE

• Need for a Unifying and Effective description of DE

• A limited number of operators, each one responsible for an observable 
dynamical feature (e.g. flavor-changing neutral currents in beyond Standard 
Model physics) 

Ideally... 
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Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

S =

�
d4x

√
−g

�
M2

2
f(φ)R− 1

2
(∂φ)2 − V (φ) + F [φ, gµν ]

�
+ Sm[gµν ,Ψm]
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Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

S =

�
d4x

√
−g

�
M2

2
f(φ)R− 1

2
(∂φ)2 − V (φ) + F [φ, gµν ]

�
+ Sm[gµν ,Ψm]

Apply covariant EFT to explore                   : field/derivative expansionF [φ, gµν ]

However:
 
- Expansion in number of fields is not necessarily meaningful 

(Weinberg `08, Park, Zurek and Watson `10,  Bloomfield and Flanagan `11)One possible strategy:
V = V1φ+ V2φ

2 + V3φ
3 + V4φ

4

= V2δφ
2 + V3φ0(t)δφ

2 + 6V4φ
2
0(t)δφ

2

All terms potentially important in cosmological perturbation theory!
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Hint:

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

S =

�
d4x

√
−g

�
M2

2
f(φ)R− 1

2
(∂φ)2 − V (φ) + F [φ, gµν ]

�
+ Sm[gµν ,Ψm]

Apply covariant EFT to explore                   : field/derivative expansionF [φ, gµν ]

However:
 
- Expansion in number of fields is not necessarily meaningful 

- Only halfway through the work to be done (background first + expand..)

(Weinberg `08, Park, Zurek and Watson `10,  Bloomfield and Flanagan `11)One possible strategy:
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EFT: a theory for the relevant low-energy d.o.f.

QCD                                           nucleons and pions 

EW theory 3 massive vector bosons, 1``Higgs”...

Cosmology                       Cosmological Perturbations!

They (re-)enter the horizon
 
1) Small in amplitude   (expansion in number of cosmological perturbations)

2) Large in size (expansion in number of derivatives)
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The Effective Field Theory of Inflation

Main idea: scalar degrees of freedom are `eaten’ by the metric. Ex:

Unitary Gauge in Cosmology

φ(t, �x) → φ0(t) (δφ = 0) −1

2
∂φ2 → −1

2
φ̇2
0(t) g

00

(Creminelli et al. `06, Cheung et al. `07)

φ3

φ2

φ1
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The Effective Field Theory of Inflation

Main idea: scalar degrees of freedom are `eaten’ by the metric. Ex:

Unitary Gauge in Cosmology

φ(t, �x) → φ0(t) (δφ = 0) −1

2
∂φ2 → −1

2
φ̇2
0(t) g

00

(Creminelli et al. `06, Cheung et al. `07)

Our Recipe for Dark Energy:       (Gubitosi, F.P.,  Vernizzi 2012)

1) Assume WEP (universally coupled metric                )  

2) Write the most generic action for       compatible with the residual
   un-broken symmetries (3-diff). 

Sm[gµν ,Ψi]

gµν
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The Action

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

The most generic action written in terms of       compatible with the 
residual symmetry of spatial diffeomorphisms

gµν
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S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

The Action

The most generic action written in terms of       compatible with the 
residual symmetry of spatial diffeomorphisms

gµν

Genuine 4-dim covariant terms are still allowed, but will in general be 
multiplied by functions of time cause time translations are broken 
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The Action

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

The most generic action written in terms of       compatible with the 
residual symmetry of spatial diffeomorphisms

gµν

General functions of time are allowed
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The Action

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

The most generic action written in terms of       compatible with the 
residual symmetry of spatial diffeomorphisms

gµν

...as well as tensors with free `0’ indices 

nµ = − ∂µφ�
−(∂φ2)

Essentially: contractions with
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Any arbitrarily complicate action with one scalar d.o.f. will 
reduce to this in Unitary gauge, plus terms that start explicitly 
quadratic in the perturbations  

The Action

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

Gubitosi, F. P., Vernizzi, 12
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The Action

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�
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The Action

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

Time-dependent couplings

Background (expansion history)

(linear) perturbations
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• Clear separation: background v.s. perturbed sector

• Expansion in number of cosmological perturbations

• Expansion in number of derivatives

• Observables, stability etc.  

The Power of the EFT of DE

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�
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Examples

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�
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√
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�
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+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
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2

�
+ . . .

�

Quintessence

const.
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Examples

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

Non-minimally coupled scalar field 
(Brans-Dicke, f(R) etc.)
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K-essence (Amendariz-Picon et al., 2000)

Examples

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

const.

S =

�
d4x

√
−gP (φ, X) X ≡ gµν∂µφ∂νφ
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“Galilean Cosmology” (Chow and Khoury,  2009)

Examples

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

S =

�
d4x

√
−g

�
M2

2
e−2φ/MR− r2c

M
(∂φ)2�φ

�
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“Generalized Galileons” (≡ Horndeski) (Deffayet et al.,  2011)

L2 = A(φ, X) ,

L3 = B(φ, X)�φ ,

L4 = C(φ, X)R− 2C,X(φ, X)
�
(�φ)2 − (∇µ∇νφ)

2
�
,

L5 = D(φ, X)Gµν∇µ∇νφ+
1

3
D,X(φ, X)

�
(�φ)3 − 3(�φ)(∇µ∇νφ)

2 + 2(∇µ∇νφ)
3
�
,

Examples

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

Gleyzes, Langlois, F.P., Vernizzi, 1304.4840
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Examples

Beyond Horndeski (linear)

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

Gleyzes, Langlois, F.P., Vernizzi, 1304.4840

�̃4(t)

The most general (linear) theory without higher 
derivatives on the propagating degree of freedom

�4(t)
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Beyond Horndeski (full, non-linear)
Gleyzes, Langlois, F.P., Vernizzi... TOMORROW?

• Equations of motion with higher derivatives

• Only two derivatives on the true propagating degree of freedom

• No ghosts 

• Interesting phenomenology (modified Jeans phenomenon)  
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Stability and Observables

S =

�
d4x

√
−g

M2(t)

2

�
R − 2λ(t) − 2C(t)g00

+ µ2
2(t)(δg

00)2 − µ3(t) δKδg00 + �4(t)

�
δKµ

ν δK
ν
µ − δK2 +

R(3) δg00

2

�
+ . . .

�

F. P., C. Marinoni, H. Steigerwald 1312.6111
and in progress...

λ(t), C(t), µ(t) ≡ dM2(t)

dt

w̄(t)

µ(t)

µ3(t)

�4(t)

µ2
2(t)

{
}

Expansion History

Growth rate, lensing etc.

Unconstrained
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Stability

Sπ =

�
a3(t)M2(t)

�
A
�
µ, µ2

2, µ3, �4
�
π̇2 + B (µ, µ3, �4)

(�∇π)2

a2

�
+ lower order in derivatives.

No ghost:  A>0 No gradient instabilities:  B>0
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Stability

Sπ =

�
a3(t)M2(t)

�
A
�
µ, µ2

2, µ3, �4
�
π̇2 + B (µ, µ3, �4)

(�∇π)2

a2

�
+ lower order in derivatives.

No ghost:  A>0 No gradient instabilities:  B>0

µ2
2 = 0
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Stability

Sπ =

�
a3(t)M2(t)

�
A
�
µ, µ2

2, µ3, �4
�
π̇2 + B (µ, µ3, �4)

(�∇π)2

a2

�
+ lower order in derivatives.

No ghost:  A>0 No gradient instabilities:  B>0

µ
2
2 � H

2
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Growth rate

f ≡ d ln δ

d ln a
= Ωγ0+γ1 ln(Ωm)

m

Geff(t) = Geff(µ, µ3, �4)

F. P., C. Marinoni, H. Steigerwald 1312.6111

Steigerwald, Bel Marinoni 1403.0898
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Growth rate

f ≡ d ln δ

d ln a
= Ωγ0+γ1 ln(Ωm)

m

Geff(t) = Geff(µ, µ3, �4)

F. P., C. Marinoni, H. Steigerwald 1312.6111

Figure 3: Expected 68%, 95%, and 99% likelihood contours on the γ0 and γ1 parameters from an EUCLID-like

survey. The black dotted line (“stronger/weaker gravity”) divides the plane according to the present value

of f , as calculated in (53). The ΛCDM model is shown by a black full square. Stabitility regions are shown

in green and assume η2 = 0. Upper left: we also show the range of parameters α and β which corresponds

to theories of gravity which are both stable and compatible with data. Upper right: same as before but for

theories specified in terms of the parameters α and η3. Lower left: same as before but for theories specified

in terms of the parameters α and η4. Lower right: same as before but for theories specified in terms of the

parameters η3 and η4.

• It appears that Brans-Dicke like models offer a maximum coverage of the likelihood surface,

with parameters α and β varying roughly in the range [0, 0.2] and [0, 0.15] respectively. On the

contrary, the space of viable theories parameterized by η3 and η4 is much more constrained, as

can be seen in panel d).

• By opportunely choosing the EFT parameters in each panel, the growth rate f can be made

larger or smaller than the growth rate in the fiducial model. The black dotted line, drawn as

explained in [73], divides the γ0 − γ1 plane according to whether local gravity, i.e. the mecha-

nism responsible for the linear growth of structures, is stronger or weaker than in the fiducial

ΛCDM model. For example, in Brans-Dicke like models, in which an increase of α(/β) pro-

duces a decrease(/increase) of γ0(/γ1), theoretically stable and observationally viable theories

may generate a present day growth rate f that is 12% smaller and 5% higher than that of the

fiducial model. Note, however, that in the vast majority of cases, stable theories predicting

a background expansion rate identical to that of the ΛCDM model, also predict growth sup-

20

Non trivial result:

γ0 < γ0(ΛCDM)

Steigerwald, Bel Marinoni 1403.0898
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Growth rate (preliminary)
Modified gravity: less growth than LCDM?

H. Steigerwald, C. Marinoni, F. P. in preparation
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Conclusions

• Unifying framework for dark energy/modified gravity

• Effective language: cosmological perturbations as the relevant d.o.f.

• Systematic way to address stability (e.g. stable violations of NEC)

• Observational constraints and forecasts: much work in progress
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Sπ =

�
a
3
M

2

��
(C + 2µ2

2)(1 + �4) +
3

4
(µ− µ3)

2

�
π̇2

−
�
(C +

µ̊3

2
− Ḣ�4 +H �̊4)(1 + �4)− (µ− µ3)

�
µ− µ3

4(1 + �4)
− µ− �̊4

��
(�∇π)2

a2

�

4πGeff =
1

2M2

2C + 2(µ+ �̊4)2 + µ̊3 − 2Ḣ�4 + 2H �̊4 + 3(a/k)2A
(1 + �4)2[2C + µ̊3 − 2Ḣ�4 + 2H �̊4] + 2(1 + �4)(µ+ �̊4)(µ− µ3)− (µ− µ3)2/2 + 3(a/k)2A�

µ̊3 ≡ µ̇3 + µµ3 +Hµ3, �̊4 ≡ �̇4 + µ�4 +H�4

A ≡ 2ḢC − Ḣµ̊3 + Ḧ(µ− µ3)− 2HḢµ3 − 2H2(µ2 + µ̇), A� ≡ (1 + �4)
2A
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Enough for background equations:

c =
1

2
(−f̈ +Hḟ)M2 +

1

2
(ρD + pD)

Λ =
1

2
(f̈ + 5Hḟ)M2 +

1

2
(ρD − pD)
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Enough for background equations:

c =
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1

2
(ρD + pD)

Λ =
1

2
(f̈ + 5Hḟ)M2 +

1

2
(ρD − pD)

“Bare” Planck Mass

Generally Related to post-newtonian parameters

Defined by the modified Friedman equations

H
2 =

1

3fM2
(ρm + ρD)

Ḣ = − 1

2fM2
(ρm + ρD + pm + pD)
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The Action

S =

�
d4x

√
−g

�
M2

2
f(t)R− Λ(t)− c(t)g00

�
+ S(2)

DE

Enough for background equations:

c =
1

2
(−f̈ +Hḟ)M2 +

1

2
(ρD + pD)

Λ =
1

2
(f̈ + 5Hḟ)M2 +

1

2
(ρD − pD)

“Bare” Planck Mass

Generally Related to post-newtonian parameters

Matter + Dark matter (in practice                   )               ρm ∝ a−3

Defined by the modified Friedman equations

H
2 =

1

3fM2
(ρm + ρD)

Ḣ = − 1

2fM2
(ρm + ρD + pm + pD)
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Mixing with gravity 1: Brans-Dicke

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�

Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

S
kinetic
=

�
M2f

�
−3Ψ̇2 − 2�∇Φ�∇Ψ+ (�∇Ψ)2 + c π̇2 − c(�∇π)2 + 3(ḟ/f)Ψ̇π̇ + (ḟ/f)�∇π(�∇Φ− 2�∇Ψ)

�

Mixing
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M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�

Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

De-mixing = conformal transformation 

ΦE = Φ+
1

2
(ḟ/f)π

ΨE = Ψ− 1

2
(ḟ/f)π

S
kinetic
=

�
M2f

�
−3Ψ̇2 − 2�∇Φ�∇Ψ+ (�∇Ψ)2 + c π̇2 − c(�∇π)2 + 3(ḟ/f)Ψ̇π̇ + (ḟ/f)�∇π(�∇Φ− 2�∇Ψ)

�
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Mixing with gravity 1: Brans-Dicke

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�

Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

S
kinetic
=

�
M2f

�
−3Ψ̇2 − 2�∇Φ�∇Ψ+ (�∇Ψ)2 + c π̇2 − c(�∇π)2 + 3(ḟ/f)Ψ̇π̇ + (ḟ/f)�∇π(�∇Φ− 2�∇Ψ)

�

1− γ ≡ Φ−Ψ

Φ
=

M2ḟ2/f

2(c+M2ḟ2/f)

Geff =
1

8πM2f

c+M2ḟ2/f

c+ 3
4M

2ḟ2/f

Newtonian
limit

anisotropic stress

dressed Newton constant
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Mixing with gravity 2:

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�
f(t) = 1

Apply Stueckelberg and go to 
Newtonian Gauge

De-mixing ≠ conformal transformation 

ΦE = Φ+
m̄3

1

2M2
π

ΨE = Ψ+
m̄3

1

2M2
π

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

(Cf. braiding: Deffayet et al.,  2010)

S
kinetic
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�
M2

�
−3Ψ̇2 − 2�∇Φ�∇Ψ+ (�∇Ψ)2

�
+ cπ̇2 − c(�∇π)2 − 3m̄3

1Ψ̇π̇ − m̄3
1
�∇Φ�∇π

Mixing
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Speed of Sound of DE

c
2
s =

c+ 1
2 (Hm̄

3
1 + ˙̄m3

1)− 1
4m̄

6
1/M

2

c+ 3
4m̄

6
1/M

2
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Newtonian
limit

NO anisotropic stress

dressed Newton constant

Mixing with gravity 2:

S =

� √
−g

�
M2

2
fR− Λ− cg00 +

M4
2

2
(δg00)2 − m̄3

1

2
δg00δK +

1

2
Tµνδgµν

�
f(t) = 1

Apply Stueckelberg and go to 
Newtonian Gauge

ds2 = −(1 + 2Φ)dt2 + a2(1− 2Ψ)δijdx
idxj

(Cf. braiding: Deffayet et al.,  2010)

S
kinetic
=

�
M2

�
−3Ψ̇2 − 2�∇Φ�∇Ψ+ (�∇Ψ)2

�
+ cπ̇2 − c(�∇π)2 − 3m̄3

1Ψ̇π̇ − m̄3
1
�∇Φ�∇π

1− γ =
Φ−Ψ

Φ
= 0

Geff =
1

8πM2f

�
1− m̄3

1

4cM2

�−1
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