Dark Energy Phenomenology: Effective Field Theory approach

Federico Piazza

Gubitosi, F. P., Vernizzi, 1210.0201 Gleyzes, Langlois, F.P., Vernizzi, 1304.4840 F. P., F. Vernizzi, 1307.4350 F. P., C. Marinoni, H. Steigerwald 1312.6111 In progress...

Nobel Prize in Physics 2011

The Universe is accelerating!

Wednesday, April 16, 2014

Naturalness problem (perhaps $\Lambda = 0$ is better than $\Lambda \sim (10^{-3} {\rm eV})^4$)

Coincidence problem (why $\rho_{\rm DE} \sim \rho_{\rm M}$ now?!).

Naturalness problem (perhaps $\Lambda=0$ is better than $\Lambda\sim(10^{-3}{\rm eV})^4$)

Coincidence problem (why $\rho_{\rm DE} \sim \rho_{\rm M}$ now?!).

Naturalness problem (perhaps $\Lambda = 0$ is better than $\Lambda \sim (10^{-3} \text{eV})^4$)

Coincidence problem (why $\rho_{\rm DE} \sim \rho_{\rm M}$ now?!).

DATA...?

PAN-STARRSI (1310.3828): $w = -1.18 \pm 0.07$

SDSSII & SNLS (1401.4064):

(talk by M. Betoule on friday)

 $w = -1.02 \pm 0.05$

Naturalness problem (perhaps $\Lambda = 0$ is better than $\Lambda \sim (10^{-3} \text{eV})^4$)

Coincidence problem (why $\rho_{\rm DE} \sim \rho_{\rm M}$ now?!).

DATA...?

Perturbation sector: less growth than expected...?

See also Hiranya's talk yesterday

Macaulay et al. '13

$DE \neq \Lambda$

There is a new propagating degree of freedom in the theory ϕ

- There is `no shortage' of dark energy and modified gravity models (>5000 papers on Spires)
- EUCLID and BigBoss will be sensitive to dynamical properties of DE
- Need for a Unifying and Effective description of DE

Ideally...

 A limited number of effective operators, each one responsible for an observable dynamical feature (e.g. flavor-changing neutral currents in physics beyond Standard Model)

- There is `no shortage' of dark energy and modified gravity models (>5000 papers on Spires)
- EUCLID and BigBoss will be sensitive to dynamical properties of DE

- There is `no shortage' of dark energy and modified gravity models (>5000 papers on Spires)
- EUCLID and BigBoss will be sensitive to dynamical properties of DE
- Need for a Unifying and Effective description of DE

Ideally...

 A limited number of operators, each one responsible for an observable dynamical feature (e.g. flavor-changing neutral currents in beyond Standard Model physics)

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right] + S_m[g_{\mu\nu}, \Psi_m]$$

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right] + S_m[g_{\mu\nu}, \Psi_m]$$

One possible strategy: (Weinberg `08, Park, Zurek and Watson `10, Bloomfield and Flanagan `11) Apply covariant EFT to explore $\mathcal{F}[\phi, g^{\mu\nu}]$:field/derivative expansion

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right] + S_m[g_{\mu\nu}, \Psi_m]$$

One possible strategy: (Weinberg `08, Park, Zurek and Watson `10, Bloomfield and Flanagan `11) Apply covariant EFT to explore $\mathcal{F}[\phi, g^{\mu\nu}]$: field/derivative expansion

However:

- Expansion in number of fields is not necessarily meaningful

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi)R - \frac{1}{2} (\partial\phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right] + S_m[g_{\mu\nu}, \Psi_m]$$

$$V = V_1 \phi + V_2 \phi^2 + V_3 \phi^3 + V_4 \phi^4$$

$$= V_2 \delta \phi^2 + V_3 \phi_0(t) \delta \phi^2 + 6V_4 \phi_0^2(t) \delta \phi^2$$
All terms potentially important in cosmological perturbation theory!

- Expansion in number of fields is not necessarily meaningful

Most DE models reduce, in their relevant regimes, to scalar tensor-theories

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(\phi) R - \frac{1}{2} (\partial \phi)^2 - V(\phi) + \mathcal{F}[\phi, g^{\mu\nu}] \right] + S_m[g_{\mu\nu}, \Psi_m]$$

One possible strategy: (Weinberg `08, Park, Zurek and Watson `10, Bloomfield and Flanagan `11) Apply covariant EFT to explore $\mathcal{F}[\phi, g^{\mu\nu}]$:field/derivative expansion

However:

- Expansion in number of fields is not necessarily meaningful
- Only halfway through the work to be done (background first + expand..)

EFT: a theory for the relevant low-energy d.o.f.

They (re-)enter the horizon

I) Small in amplitude (expansion in number of cosmological perturbations)

2) Large in size (expansion in number of derivatives)

Unitary Gauge in Cosmology

The Effective Field Theory of Inflation (Creminelli et al. `06, Cheung et al. `07)

Main idea: scalar degrees of freedom are `eaten' by the metric. Ex:

$$\phi(t,\vec{x}) \to \phi_0(t) \quad (\delta\phi=0) \qquad -\frac{1}{2}\partial\phi^2 \to -\frac{1}{2}\dot{\phi}_0^2(t) \ g^{00}$$

Unitary Gauge in Cosmology

The Effective Field Theory of Inflation (Creminelli et al. `06, Cheung et al. `07)

Main idea: scalar degrees of freedom are `eaten' by the metric. Ex:

$$\phi(t,\vec{x}) \to \phi_0(t) \quad (\delta\phi=0) \qquad -\frac{1}{2}\partial\phi^2 \to -\frac{1}{2}\dot{\phi}_0^2(t) \ g^{00}$$

Our Recipe for Dark Energy: (Gubitosi, F.P., Vernizzi 2012)

1) Assume WEP (universally coupled metric $S_m[g_{\mu\nu}, \Psi_i]$)

2) Write the most generic action for $g_{\mu\nu}$ compatible with the residual un-broken symmetries (3-diff).

$$S = \int d^4x \sqrt{-g} \, \frac{M^2(t)}{2} \, \left[R - 2\lambda(t) \, - \, 2\mathcal{C}(t)g^{00} \right]$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} \right]$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

Genuine 4-dim covariant terms are still allowed, but will in general be multiplied by functions of time cause time translations are broken

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} \right]$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

General functions of time are allowed

$$S = \int d^4x \sqrt{-g} \, \frac{M^2(t)}{2} \, \left[R \, - \, 2\lambda(t) \, - \, \frac{2\mathcal{C}(t)g^{00}}{2} \right]$$

The most generic action written in terms of $g_{\mu\nu}$ compatible with the residual symmetry of spatial diffeomorphisms

...as well as tensors with free `0' indices

$$S = \int d^4x \sqrt{-g} \, \frac{M^2(t)}{2} \, \left[R \, - \, 2\lambda(t) \, - \, 2\mathcal{C}(t)g^{00} \right]$$

Any arbitrarily complicate action with one scalar d.o.f. will reduce to this in Unitary gauge, plus terms that start explicitly quadratic in the perturbations

Gubitosi, F. P., Vernizzi, 12

$$S = \int d^4x \sqrt{-g} \, \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \,\delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \,\delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \,\delta g^{00}}{2} \right) + \dots \right]$$

Background (expansion history)

$$S = \int d^4x \sqrt{-g} \underbrace{\frac{M^2(t)}{2}}_{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \underbrace{\mu_2^2(t)}_{2} (\delta g^{00})^2 - \underbrace{\mu_3(t)}_{3} \delta K \delta g^{00} + \underbrace{\epsilon_4(t)}_{4} \left(\delta K^{\mu}_{\ \nu} \, \delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \, \delta g^{00}}{2} \right) + \dots \right]$$

(linear) perturbations

Time-dependent couplings

The Power of the EFT of DE

$$S = \int d^4x \sqrt{-g} \, \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t)\,\delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu}\,\delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)}\,\delta g^{00}}{2} \right) + \dots \right]$$

- Clear separation: background v.s. perturbed sector
- Expansion in number of cosmological perturbations
- Expansion in number of derivatives
- Observables, stability etc.

$$S = \int d^4x \sqrt{-g} \,\frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t)\,\delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu}\,\delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)}\,\delta g^{00}}{2} \right) + \dots \right]$$

Examples

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \,\delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \,\delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \,\delta g^{00}}{2} \right) + \dots \right]$$

Quintessence

$$S = \int d^4x \sqrt{-g} \underbrace{\frac{M^2(t)}{2}}_{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \,\delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \,\delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \,\delta g^{00}}{2} \right) + \dots \right]$$

Non-minimally coupled scalar field (Brans-Dicke, f(R) etc.)

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t) (\delta g^{00})^2 - \mu_3(t) \,\delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \,\delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \,\delta g^{00}}{2} \right) + \dots \right]$$

K-essence (Amendariz-Picon et al., 2000)

$$S = \int d^4x \sqrt{-g} P(\phi, X) \qquad X \equiv g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi$$

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t) (\delta g^{00})^2 - \mu_3(t) \delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \, \delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \, \delta g^{00}}{2} \right) + \dots \right]$$

"Galilean Cosmology" (Chow and Khoury, 2009)

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} e^{-2\phi/M} R - \frac{r_c^2}{M} (\partial\phi)^2 \Box\phi \right]$$

Wednesday, April 16, 2014

$$S = \int d^4x \sqrt{-g} \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t)\delta K\delta g^{00} + \epsilon_4(t)\left(\delta K^{\mu}_{\ \nu} \,\delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \,\delta g^{00}}{2}\right) + \dots \right]$$

"Generalized Galileons" (= Horndeski)

(Deffayet et al., 2011)

$$\begin{aligned} \mathcal{L}_2 &= A(\phi, X) ,\\ \mathcal{L}_3 &= B(\phi, X) \Box \phi ,\\ \mathcal{L}_4 &= C(\phi, X) R - 2C_{,X}(\phi, X) \left[(\Box \phi)^2 - (\nabla_\mu \nabla_\nu \phi)^2 \right] ,\\ \mathcal{L}_5 &= D(\phi, X) G^{\mu\nu} \nabla_\mu \nabla_\nu \phi + \frac{1}{3} D_{,X}(\phi, X) \left[(\Box \phi)^3 - 3 (\Box \phi) (\nabla_\mu \nabla_\nu \phi)^2 + 2 (\nabla_\mu \nabla_\nu \phi)^3 \right] ,\end{aligned}$$

The most general (linear) theory without higher derivatives on the propagating degree of freedom

Gleyzes, Langlois, F.P., Vernizzi... TOMORROW?

Beyond Horndeski (full, non-linear)

- Equations of motion with higher derivatives
- Only two derivatives on the true propagating degree of freedom
- No ghosts
- Interesting phenomenology (modified Jeans phenomenon)

Stability and Observables

F. P., C. Marinoni, H. Steigerwald 1312.6111 and in progress...

$$S = \int d^4x \sqrt{-g} \, \frac{M^2(t)}{2} \left[R - 2\lambda(t) - 2\mathcal{C}(t)g^{00} + \mu_2^2(t)(\delta g^{00})^2 - \mu_3(t) \,\delta K \delta g^{00} + \epsilon_4(t) \left(\delta K^{\mu}_{\ \nu} \,\delta K^{\nu}_{\ \mu} - \delta K^2 + \frac{R^{(3)} \,\delta g^{00}}{2} \right) + \dots \right]$$

$$\begin{split} \lambda(t), \ \ \mathcal{C}(t), \ \ \mu(t) \equiv \frac{dM^2(t)}{dt} \left\{ \begin{array}{ll} \bar{w}(t) & \text{Expansion History} \\ \mu(t) \\ \mu_3(t) \\ \epsilon_4(t) \end{array} \right\} & \text{Growth rate, lensing etc.} \\ \mu_2^2(t) & \text{Unconstrained} \end{split}$$

Stability

$$S_{\pi} = \int a^{3}(t)M^{2}(t) \left[A\left(\mu, \mu_{2}^{2}, \mu_{3}, \epsilon_{4}\right) \dot{\pi}^{2} + B\left(\mu, \mu_{3}, \epsilon_{4}\right) \frac{(\vec{\nabla}\pi)^{2}}{a^{2}} \right] + \text{lower order in derivatives.}$$

$$\uparrow$$
No ghost: A>0 No gradient instabilities: B>0

Stability

$$S_{\pi} = \int a^{3}(t)M^{2}(t) \left[A\left(\mu, \mu_{2}^{2}, \mu_{3}, \epsilon_{4}\right) \dot{\pi}^{2} + B\left(\mu, \mu_{3}, \epsilon_{4}\right) \frac{(\vec{\nabla}\pi)^{2}}{a^{2}} \right] + \text{lower order in derivatives.}$$
No ghost: A>0 No gradient instabilities: B>0
$$\mu_{2}^{2} = 0$$

$$\mu_{2}^{2} = 0$$

Stability

$$S_{\pi} = \int a^{3}(t)M^{2}(t) \left[A\left(\mu,\mu_{2}^{2},\mu_{3},\epsilon_{4}\right) \dot{\pi}^{2} + B\left(\mu,\mu_{3},\epsilon_{4}\right) \frac{(\vec{\nabla}\pi)^{2}}{a^{2}} \right] + \text{lower order in derivatives.}$$
No ghost: A>0 No gradient instabilities: B>0
$$\mu_{2}^{2} \gg H^{2}$$

$$\mu_{2}^{2} \gg H^{2}$$

$$\mu_{2}^{2} \gg H^{2}$$

$$\mu_{2}^{2} \gg H^{2}$$

F. P., C. Marinoni, H. Steigerwald 1312.6111

Growth rate

$$G_{\text{eff}}(t) = G_{\text{eff}}(\mu, \mu_3, \epsilon_4)$$

$$f \equiv \frac{d\ln\delta}{d\ln a} = \Omega_m^{\gamma_0 + \gamma_1\ln(\Omega_m)}$$

Steigerwald, Bel Marinoni 1403.0898

Growth rate

$$G_{\text{eff}}(t) = G_{\text{eff}}(\mu, \mu_3, \epsilon_4)$$

$$f \equiv \frac{d\ln\delta}{d\ln a} = \Omega_m^{\gamma_0 + \gamma_1 \ln(\Omega_m)}$$

Steigerwald, Bel Marinoni 1403.0898

Non trivial result:

$$\gamma_0 < \gamma_0 (\Lambda CDM)$$

Growth rate (preliminary)

Modified gravity: less growth than LCDM?

Conclusions

- Unifying framework for dark energy/modified gravity
- Effective language: cosmological perturbations as the relevant d.o.f.
- Systematic way to address stability (e.g. stable violations of NEC)
- Observational constraints and forecasts: much work in progress

$$S_{\pi} = \int a^{3} M^{2} \left\{ \left[(\mathcal{C} + 2\mu_{2}^{2})(1 + \epsilon_{4}) + \frac{3}{4}(\mu - \mu_{3})^{2} \right] \dot{\pi}^{2} - \left[(\mathcal{C} + \frac{\ddot{\mu}_{3}}{2} - \dot{H}\epsilon_{4} + H\mathring{\epsilon}_{4})(1 + \epsilon_{4}) - (\mu - \mu_{3})\left(\frac{\mu - \mu_{3}}{4(1 + \epsilon_{4})} - \mu - \mathring{\epsilon}_{4}\right) \right] \frac{(\vec{\nabla}\pi)^{2}}{a^{2}} \right\}$$

$$4\pi G_{\text{eff}} = \frac{1}{2M^2} \frac{2\mathcal{C} + 2(\mu + \mathring{\epsilon}_4)^2 + \mathring{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\mathring{\epsilon}_4 + 3(a/k)^2\mathcal{A}}{(1 + \epsilon_4)^2 [2\mathcal{C} + \mathring{\mu}_3 - 2\dot{H}\epsilon_4 + 2H\mathring{\epsilon}_4] + 2(1 + \epsilon_4)(\mu + \mathring{\epsilon}_4)(\mu - \mu_3) - (\mu - \mu_3)^2/2 + 3(a/k)^2\mathcal{A}'}$$

$$\mathring{\mu}_3 \equiv \dot{\mu}_3 + \mu \mu_3 + H \mu_3, \qquad \mathring{\epsilon}_4 \equiv \dot{\epsilon}_4 + \mu \epsilon_4 + H \epsilon_4$$

 $\mathcal{A} \equiv 2\dot{H}\mathcal{C} - \dot{H}\mathring{\mu}_{3} + \ddot{H}(\mu - \mu_{3}) - 2H\dot{H}\mu_{3} - 2H^{2}(\mu^{2} + \dot{\mu}), \qquad \mathcal{A}' \equiv (1 + \epsilon_{4})^{2}\mathcal{A}$

Wednesday, April 16, 2014

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Enough for background equations:

$$c = \frac{1}{2}(-\ddot{f} + H\dot{f})M^2 + \frac{1}{2}(\rho_D + p_D)$$
$$\Lambda = \frac{1}{2}(\ddot{f} + 5H\dot{f})M^2 + \frac{1}{2}(\rho_D - p_D)$$

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Enough for background equations:

$$c = \frac{1}{2}(-\ddot{f} + H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} + p_{D})$$
$$\Lambda = \frac{1}{2}(\ddot{f} + 5H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} - p_{D})$$

Generally Related to post-newtonian parameters

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Enough for background equations:

$$c = \frac{1}{2}(-\ddot{f} + H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} + p_{D})$$
$$\Lambda = \frac{1}{2}(\ddot{f} + 5H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} - p_{D})$$

Generally Related to post-newtonian parameters

"Bare" Planck Mass

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Enough for background equations:

$$c = \frac{1}{2}(-\ddot{f} + H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} + p_{D})$$

$$\Lambda = \frac{1}{2}(\ddot{f} + 5H\dot{f})M^{2} + \frac{1}{2}(\rho_{D} - p_{D})$$

$$H^{2} = \frac{1}{3fM^{2}}(\rho_{m} + \rho_{D})$$

$$H^{2} = \frac{1}{3fM^{2}}(\rho_{m} + \rho_{D})$$

$$\dot{H} = -\frac{1}{2fM^{2}}(\rho_{m} + \rho_{D} + p_{m} + p_{D})$$
"Provide Next on Definition of the set of the

'Bare' Planck Mass Defined by the modified Friedman equations

$$S = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} f(t)R - \Lambda(t) - c(t)g^{00} \right] + S_{DE}^{(2)}$$

Enough for background equations:

Mixing with gravity 1: Brans-Dicke

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda \left(cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply Stueckelberg and go to Newtonian Gauge $ds^2 = -(1+2\Phi)dt^2 + a^2(1-2\Psi)\delta_{ij}dx^i dx^j$

$$S \stackrel{\text{kinetic}}{=} \int M^2 f \left[-3\dot{\Psi}^2 - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^2 + c\,\dot{\pi}^2 - c(\vec{\nabla}\pi)^2 + 3(\dot{f}/f)\dot{\Psi}\dot{\pi} + (\dot{f}/f)\vec{\nabla}\pi(\vec{\nabla}\Phi - 2\vec{\nabla}\Psi) \right]$$

Mixing

Mixing with gravity 1: Brans-Dicke

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda \left(cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply Stueckelberg and go to Newtonian Gauge $ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$ $S^{\text{kinetic}} \int M^{2}f \left[-3\dot{\Psi}^{2} - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^{2} + c\,\dot{\pi}^{2} - c(\vec{\nabla}\pi)^{2} + 3(\dot{f}/f)\dot{\Psi}\dot{\pi} + (\dot{f}/f)\vec{\nabla}\pi(\vec{\nabla}\Phi - 2\vec{\nabla}\Psi) \right]$

De-mixing = conformal transformation

Mixing

$$\Phi_E = \Phi + \frac{1}{2}(\dot{f}/f)\pi$$
$$\Psi_E = \Psi - \frac{1}{2}(\dot{f}/f)\pi$$

Mixing with gravity 1: Brans-Dicke

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda \left(cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply Stueckelberg and go to Newtonian Gauge $ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$ $S^{\text{kinctic}} \int M^{2}f \left[-3\dot{\Psi}^{2} - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^{2} + c\,\dot{\pi}^{2} - c(\vec{\nabla}\pi)^{2} + 3(\dot{f}/f)\dot{\Psi}\dot{\pi} + (\dot{f}/f)\vec{\nabla}\pi(\vec{\nabla}\Phi - 2\vec{\nabla}\Psi) \right]$ $1 - \gamma \equiv \frac{\Phi - \Psi}{\Phi} = \frac{M^{2}\dot{f}^{2}/f}{2(c+M^{2}\dot{f}^{2}/f)} \quad \text{anisotropic stress}$ Newtonian limit $G_{\text{eff}} = \frac{1}{8\pi M^{2}f} \frac{c+M^{2}\dot{f}^{2}/f}{c+\frac{3}{4}M^{2}\dot{f}^{2}/f} \quad \text{dressed Newton constant}$

(Cf. braiding: Deffayet et al., 2010)

$$f(t) = 1$$

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda + cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply Stueckelberg and go to Newtonian Gauge $ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$ $S^{\text{kinetic}} \int M^{2} \left[-3\dot{\Psi}^{2} - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^{2} \right] + c\dot{\pi}^{2} - c(\vec{\nabla}\pi)^{2} + 3\bar{m}_{1}^{3}\dot{\Psi}\dot{\pi} + \bar{m}_{1}^{3}\vec{\nabla}\Phi\vec{\nabla}\pi$

De-mixing \neq conformal transformation

Mixing

$$\Phi_E = \Phi + \frac{\bar{m}_1^3}{2M^2}\pi$$
$$\Psi_E = \Psi + \frac{\bar{m}_1^3}{2M^2}\pi$$

(Cf. braiding: Deffayet et al., 2010)

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda + cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply Stueckelberg and go to Newtonian Gauge $ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$ $S^{\text{kinetic}} \int M^{2} \left[-3\dot{\Psi}^{2} - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^{2} \right] + c\dot{\pi}^{2} - c(\vec{\nabla}\pi)^{2} + 3\bar{m}_{1}^{3}\dot{\Psi}\dot{\pi} + \bar{m}_{1}^{3}\vec{\nabla}\Phi\vec{\nabla}\pi$

Mixing

 c_s^2

(Cf. braiding: Deffayet et al., 2010)

$$f(t) = 1$$

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda + cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply Stueckelberg and go to Newtonian Gauge $ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$ $S^{\text{kinetic}} \int M^{2} \left[-3\dot{\Psi}^{2} - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^{2} \right] + c\dot{\pi}^{2} - c(\vec{\nabla}\pi)^{2} + 3\bar{m}_{1}^{3}\dot{\Psi}\dot{\pi} + \bar{m}_{1}^{3}\vec{\nabla}\Phi\vec{\nabla}\pi$

Mixing

Speed of Sound of DE

$$=\frac{c+\frac{1}{2}(H\bar{m}_{1}^{3}+\dot{\bar{m}}_{1}^{3})-\frac{1}{4}\bar{m}_{1}^{6}/M^{2}}{c+\frac{3}{4}\bar{m}_{1}^{6}/M^{2}}$$

(Cf. braiding: Deffayet et al., 2010)

$$f(t) = 1$$

$$S = \int \sqrt{-g} \left(\frac{M^2}{2} fR - \Lambda + cg^{00} + \frac{M_2^4}{2} (\delta g^{00})^2 - \frac{\bar{m}_1^3}{2} \delta g^{00} \delta K + \frac{1}{2} T^{\mu\nu} \delta g_{\mu\nu} \right)$$

Apply Stueckelberg and go to
Newtonian Gauge

$$ds^{2} = -(1+2\Phi)dt^{2} + a^{2}(1-2\Psi)\delta_{ij}dx^{i}dx^{j}$$

$$S^{\text{kinetic}} \int M^{2} \left[-3\dot{\Psi}^{2} - 2\vec{\nabla}\Phi\vec{\nabla}\Psi + (\vec{\nabla}\Psi)^{2} \right] + c\dot{\pi}^{2} - c(\vec{\nabla}\pi)^{2} + 3\bar{m}_{1}^{3}\dot{\Psi}\dot{\pi} + \bar{m}_{1}^{3}\vec{\nabla}\Phi\vec{\nabla}\pi$$

$$1 - \gamma = \frac{\Phi - \Psi}{\Phi} = 0$$
Newtonian
limit

$$G_{\text{eff}} = \frac{1}{8\pi M^{2}f} \left(1 - \frac{\bar{m}_{1}^{3}}{4cM^{2}} \right)^{-1} \text{dressed Newton constant}$$