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Outline

-» Upcoming detectors and space missions

-» opportunities to observe gravitational waves from 1 to 108
solar mass sources

-#- Binary inspiral sources
-» Why are they standard candles or “sirens”?
-»- How can they be used for cosmography?
-# Learning about black hole seeds

-# Cosmological backgrounds
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LISA: Laser
Interferometer Space

Antenna
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eLISA

-» Consists of 3 spacecraftin

_ . ; Earth 1 million km
heliocentric orbit

-» Distance between
spacecraft ~ 1 million km

-» 10to 30 degrees behind
earth Sun

-» The three eLISA spacecraft
follow Earth almost as a

rigid triangle entirely due to = / * N
celestial mechanics ) / . ) \ ’

-» Thetriangle rotates Iike.\
a cartwheel as craft orbit
the sun

10-30°
60°

1 AU (150 million km)
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THE GRAVITATIONAL UNIVERSE

A General Science Theme addressed by the eLISA Survey Mission observing the entire Universe

Selected by ESA for L3 launch in 2034

1 AU
Sun
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Initial Interferometers
Ca2002-2010

11
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Initial Interferometer Network

-» Between 2006-2010 larger detectors took 2 years worth of data at
unprecedented sensitivity levels

-2 No detections so far but beginning to impact astrophysics
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Initial Interferometer Network

-» Between 2006-2010 larger detectors took 2 years worth of data at
unprecedented sensitivity levels
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Sky Coverage of HL
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Sky Coverage of HLV
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Initial LIGO/Virgo Sensitivity

16
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89 nitial LIGO Sensitivity 2002-2006
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LIGO

Design goal reached in 2006
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Virgo Science Run_2
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Highlights from initial detectors

- Beating the spin-down limit on the strength of gravitational

waves from of the crab pulsar

-# Crab pulsar emits less than 1% of its rotational energy into
gravitational waves

-# Improved upper limits on the strength of stochastic

backgrounds around 100 Hz
-» Better than BB nucleosynthesis limit

» Providing indirect evidence that certain extra_Galactic short

GRBs are SGRs
-»- First detection of a magnetar outside the Milky Way

-# Follow_up of hundreds of short and hard gamma_ray burst

events

20
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Advanced Detectors:
Ca2015-2025

21
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Advanced Detector Network

Between 2015-2022 five large detectors should become

ional
operationa 22
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Advanced Detectors: Schedule and Sensitivity

Advanced LIGO

strain noise amplitude (Hz‘”z)

|—Early (2015, 60 + 20 Mpc)
~|—Mid (2016-17, 100 + 20 Mpc)
— Late (2017-18, 140 + 30 Mpc)
~|—Final (2019, 200 Mpc)

| ——BNS-optimized (2020, 215 Mpc)}

strain noise amplitude (Hz‘”z)

il
3

Advanced Virgo

—Early (2016-17, 40 + 20 Mpc) ||
—Mid (201718, 70 + 15 Mpc) ||
— Late (2018-20, 100 + 15 Mpc)||
—Final (2021, 130 Mpc)

/

il
3

10' 10° 10 10' 10° 10
frequency (Hz) frequency (Hz)
Run BNS range (Mpc) | Number of Median % localized within
Epoch Duration LIGO Virgo Detections | Area (deg?®) | 5deg® | 20deg?
2015 3 months | 60 &£ 20 — 0.0004 - 3 2000 - -
201617 6 months | 10020 | 4020 | 0.006 - 20 70 2 15
2017-18 6 months | 140£30 | 70 £15 0.02 - 70 84 1 12
2019+ (per year) 200 1004+ 15 | 0.2 - 200 31 5 37
2022+ (India) | (per year) 200 130 0.4 - 400 11 19 73
Aasi et al 2013 (arXiv:1304.0670) 28
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2008-2011
European
Conceptual
Design Study

20132016
ETRandD

Underground
detectors
should have
Significant
reductionin
gravity
gradient noise
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Sources Accessible to Ground

detector sensitivities & signal strengths (1/VHz)

frequency (Hz)
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Sources Accessible from Space
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Binary Inspiral Sources of Gravitational Waves

33
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Frequency-Mass Diagram For Compact Binaries
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Binary inspiral sources of gravitational waves
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Binary black hole dynamics

-# The signal from a binary black hole is characte
-» slow adiabatic inspiral - the two bodies slowl

rized by
y spiral in towards each

other; dynamics well described by post_-Newtonian approximation
-»- fastand luminous merger phase; requires numerical solutions to

Einstein equations
-»- rapid ringdown phase; newly black hole emit

s quasi—-normal

radiation — can be computed using perturbation theory
-»-  The shape of the signal contains information about the binary

“ (\
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Huge Parameter Space and Strong Field Dynamics
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Spins cause frame dragging and orbital plane precession
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Dynamics completely governed by General Relativity:
Different methods have been used to attack the problem
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Dynamics completely governed by General Relativity:
Different methods have been used to attack the problem
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Dynamics completely governed by General Relativity:
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Dynamics completely governed by General Relativity:
Different methods have been used to attack the problem
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Inferring Distance from GW Observations

-# The shape of the signal is

detectors are determined
by the distance,

Amplitude

:
> 4

direction, polarization
and inclination

-» Toinfer the distance we
heed to be able to

determined by masses,
spins and eccentricity
-»- The amplitude and arrival
measure all the
parameters and the

ulds suiseaudu

times in different
source’s redshift Time v
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What do gravitational wave detectors measure?

-» A combination of the
two polarizations called
antennaresponse:

N

B Radiation plane

-# So a network of 3 or

more detectors would be ¢
needed to measure the 2 N detector
. . €y y-arm
source direction; but we s >
X
can also measure binary &
. : & o
masses, their spins and &2
orientation of the binary Detector plane
BSS and Schutz 2009 41
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Why are inspirals Standard Sirens
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Why are inspirals standard sirens?

-# Luminosity distance D can be inferred if one can measure:
-» the flux of radiation F and

-»- absolute luminosity L. D = L
V AnF

-» Flux of gravitational waves depends on the amplitude of
gravitational waves measured by our detectors

-» Absolute luminosity can be inferred from the rate fat which
the frequency of a source changes

-» Not unlike Cephied variables except thatf is completely
determined by general relativity

-» Therefore compact binaries are self_calibrating standard

sirens
Schutz Nature|986 43
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What do we actually measure?

- We really only measure

- the redshifted distance = luminosity distance Dy, = D(1 + z2)

- blueshifted chirp mass M(1 + 2)

-2 This means we cannot measure the source’s redshift without
EM identification

-»- (at least thatis what we thought until recently .. .,

-2 If we measure the source redshift we can deduce the intrinsic
mass of the source and resolve redshift_mass degeneracy

-2 Distance is strongly correlated with the unknown orbital
inclination of the source with respect to line_of_sight

44
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Hubble Constant from Advanced Detectors
without EM counterparts

25 events:

H, = 69 £ 3 km s7*Mpc (~4% at 95% confidence)
50 events:

H, =69 + 2 km s *Mpc (~3% at 95% confidence)
WMAP7+BAO+Snla (Komatsu et al.,2011):

H =70.2 £ 1.4 km s Mpc (~2% at 68%
confidence)

Del Pozzo, arXivl 108.1317
45
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Hubble Constant from Advanced Detectors
Assuming short_hard—_GRBs are binary neutron stars

PN 4 AL ViLLU/L WMbLLL\JLLU\J\A UJ w ANV UL \J 4 A e A Lulo 4L AU UVALLAWD .LWU\_/’

we find that one year of observation should be enough
to measure Hy to an accuracy of ~ 1% if SHBs are dom-
inated by beamed NS-BH binaries using the “full” net-
work of LIGO, Virgo, AIGO, and LCGT—admittedly,

cos(1) cos(1) cos(1)
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Nissanke et al 2009 477
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ET: Measuring Dark Energy and Dark Matter

-» ET will observe 100’s of binary neutron stars and GRB
associations each year

-»- GRBs could give the host location and red_shift, GW
observation provides D,

Class. Quantum Grav. 27 (2010) 215006 B S Sathyaprakash et al

-1.27

~1.4}

0.1 0 0.1 0.2 0.3 0.4
438
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Measuring w and its variation with z

1y W) = Dae/pae = wo + waz/(1+ 2)

—— BAO+CMB |
—— SNIa+CMB ]|
—— GW+CMB

0.6 —
0.4 ]
0.2 —
. ool
-0.2 —
04l

-0.6 -

-0.8 ! : ! : ! : ! : ! : ! : !
-1.3 -1.2 -1.1 -1.0 -0.9 -0.8 -0.7

Baskaran,Van Den Broeck, Zhao, Li, 201 | Y 49
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Measuring a cosmological distance-redshift relationship using only gravitational wave observations
of binary neutron star coalescences

C. Messenger
School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA*

J. Read
Department of Physics and Astronomy, The University of Mississippi, P.O. Box 1848, Oxford, Mississippi 38677-1848

Hubble without the Hubble:
Cosmology using advanced gravitational-wave detectors alone

Stephen R. Taylor*
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Jonathan R. Gair'
Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Ilya Mandel*
NSF Astronomy and Astrophysics Postdoctoral Fellow,
MIT Kavli Institute, Cambridge, MA 02139; and
School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT
(Dated: January 31, 2012)

50
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Messenger—_Read Method.:

Make use of the post_Newtonian Tidal Term
K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A.

Sundararajan, Phys. Rev. D, 71, 084008 (2005), arXiv:gr-
qc/0411146.

Prp(f) = 2nfte = pe = 5 128nx5/2 Z !

T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys.
Rev. D, 81, 123016 (2010), arXiv:0911.3535 [astro-ph.HE].

: 34, 24 11 >/2

\Ptldal(f) — Z i nmyx (3)
a=1.2 128]] Xd Xd M5

5

7/2
2 3\ A
(3179 = 919y, — 2286y + 260y W]

- 28X

R L
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Measurement 1 ;
accuracy of
source redshift

N
~—
N
<
10_2 | |
0.01 0.1 1
Messenger and Read, PRL, 2011 redshift z
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Cosmology with the lights off:

-»- Distribution of Chirp Mass

M ~ N (g, 0'2)7
e =~ 2(0.25)3 P uns, 0 ~ v2(0.25)% Pong,
UNS € [1.0,1.5]M@, ONS € [0,0.g]M@

w(a) = wy + we(l —a),

w(z):wo—l—wa<1jz>.

Taylor, Gair, Mandel 2011, 2012 53
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Measuring dark energy EoS and its
variation with redshift

-1.4 -1.2 —1 -0.8 -0.6

Thursday, 17 April 2014




Host redshifts from gravitational wave observations

M = ¢(f(1+2))

M M,/(1+2) from HMNS phase
from inspiral (numerical)
(analytic)

[ joint posterior
| onMand \

>

error on 2 from
HMNS phase

|, error on M
from inspiral

gravitational mass )/

redshlft Z

Messenger, Takami, Gossan, Rezzzolla, BSS, 2014

55
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Black Hole Demographics
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Advanced LIGO Distance Reach to Binary Coalescences

[
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g 1s mass ratio

(O8]

horizon distance (Mpc)
S

2

10

10’ 10° 10
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ET Distance Reach to Coalescing Binaries
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ET Distance Reach to Coalescing Binaries
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ET Distance Reach to Coalescing Binaries
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Observing Intermediate_mass Black Hole Binaries

-» Ultra_luminous X_ray sources might be hosting black holes of
mass one thousand solar masses

- 100 solar mass black holes could be seeds of galaxy formation

-» ET could observe black hole populations at different red_shifts
and resolve questions about black hole demographics
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Gravitational Wave Backgrounds
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Sources Accessible from Space
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Primordial Backgrounds

o—o Cosmic strings (p=1, e=1)

— - SUSY flat direction (1)

— - SUSY flat direction (2)

- — Tachyonic preheating
Inflation (r=0.15, n.=0.2)

* SUSY phase transition, F=10°Gev
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GW observations tell us about ...

-»- Cosmography

-2 Verify cosmicdistance ladder, strengthen existing calibrations at high z

-» Measure the Hubble parameter, dark matter and dark energy densities,
dark energy EoS w, variation of w with z

-» Black hole seeds

- Confirm the nature black hole seeds, their masses and demographics
-» Explore hierarchical growth of central engines of black holes

- Anisotropic cosmologies

-» Inan anisotropic Universe the distribution of H on the sky should show
residual quadrupole and higher_order anisotropies

-» Primordial gravitational waves

- Quantum fluctuations in the early Universe produces stochasticb/g

-2 Production of GW during early Universe phase transitions

-»- Phase transitions, pre_heating, re_heating, etc., could produce detectable
stochastic GW

Thursday, 17 April 2014



