Gravitational waves and cosmology

Progress on Old and New Themes in Cosmology (PONT), 14–18 April 2014

B.S. Sathyaprakash

School of Physics and Astronomy, Cardiff University

Outline

- Upcoming detectors and space missions
 - opportunities to observe gravitational waves from 1 to 10⁸
 solar mass sources
- Binary inspiral sources
 - Why are they standard candles or "sirens"?
 - How can they be used for cosmography?
 - Learning about black hole seeds
- Cosmological backgrounds

THE GRAVITATIONAL WAVE SPECTRUM

Ultra Low Frequency

Very Low Frequency

Low Frequency

LISA: Laser Interferometer Space Antenna

7

eLISA

- Consists of 3 spacecraft in heliocentric orbit
 - Distance between
 spacecraft ~ 1 million km
 - 10 to 30 degrees behind earth
- The three eLISA spacecraft
 follow Earth almost as a
 rigid triangle entirely due to
 celestial mechanics
 - The triangle rotates like a cartwheel as craft orbit the sun

THE GRAVITATIONAL UNIVERSE

A General Science Theme addressed by the *eLISA* Survey Mission observing the entire Universe

Selected by ESA for L3 laurch in 2034

9

High Frequency

Initial Interferometers Ca 2002–2010

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

 Between 2006_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

Sky Coverage of HL

Sky Coverage of HLV

Initial LIGO / Virgo Sensitivity

Initial LIGO Sensitivity 2002-2006

Thursday, 17 April 2014

LIGO

LSC

Design goal reached in 2006

LIGO

18

Virgo Science Run_2

Highlights from initial detectors

- Beating the spin_down limit on the strength of gravitational waves from of the crab pulsar
 - Crab pulsar emits less than 1% of its rotational energy into gravitational waves
- Improved upper limits on the strength of stochastic backgrounds around 100 Hz
 - Better than BB nucleosynthesis limit
- Providing indirect evidence that certain extra_Galactic short
 GRBs are SGRs
 - First detection of a magnetar outside the Milky Way
- Follow-up of hundreds of short and hard gamma-ray burst events

Advanced Detectors: Ca 2015-2025

Advanced Detector Network

Between 2015_2022 five large detectors should become operational

Advanced Detector Network

Between 2015_2022 five large detectors should become operational

Advanced Detector Network

Between 2015_2022 five large detectors should become operational

Sky Coverage of HIJLV

Detector Networks 2015-

Detector Networks 2016-

Detector Networks 2018-

Detector Networks 2022-

Advanced Detectors: Schedule and Sensitivity

Aasi et al 2013 (arXiv:1304.0670)

Advanced Detectors: Schedule and Sensitivity

Aasi et al 2013 (arXiv:1304.0670)

2008_2011 European Conceptual Design Study

2013_2016 ET R and D

Underground detectors should have Significant reduction in gravity gradient noise

Sources Accessible to Ground

Sources Accessible from Space

Binary Inspiral Sources of Gravitational Waves

Frequency_Mass Diagram For Compact Binaries

Binary black hole dynamics

- The signal from a binary black hole is characterized by
 - slow adiabatic inspiral the two bodies slowly spiral in towards each other; dynamics well described by post-Newtonian approximation
 - fast and luminous merger phase; requires numerical solutions to Einstein equations
 - rapid ringdown phase; newly black hole emits quasi_normal radiation _ can be computed using perturbation theory
- The shape of the signal contains information about the binary

36

Huge Parameter Space and Strong Field Dynamics

Spins cause frame dragging and orbital plane precession

Inferring Distance from GW Observations

- The shape of the signal is determined by masses, spins and eccentricity
- The amplitude and arrival times in different detectors are determined by the distance, direction, polarization and inclination
- To infer the distance we need to be able to measure all the parameters and the source's redshift

What do gravitational wave detectors measure?

A combination of the two polarizations called antenna response:

$$h(t) = F_{+}(\theta, \varphi, \psi)h_{+}(t)$$
$$+F_{\times}(\theta, \varphi, \psi)h_{\times}(t)$$

So a net work of 3 or more detectors would be needed to measure the source direction; but we detector aim can also measure binary masses, their spins and orientation of the binary

Why are inspirals Standard Sirens

Why are inspirals standard sirens?

- Luminosity distance *D* can be inferred if one can measure:
 - the flux of radiation *F* and
 - $rac{1}{2}$ absolute luminosity $L_{:}$ D =

 $D = \sqrt{\frac{L}{4\pi F}}$

- Flux of gravitational waves depends on the amplitude of gravitational waves measured by our detectors
- Absolute luminosity can be inferred from the rate f at which the frequency of a source changes
 - Not unlike Cephied variables except that f is completely determined by general relativity
- Therefore compact binaries are self_calibrating standard sirens

What do we actually measure?

- We really only measure
 - The redshifted distance = luminosity distance $D_L = D(1 + z)$
 - blueshifted chirp mass $\mathcal{M}(1+z)$
- This means we cannot measure the source's redshift without EM identification
 - (at least that is what we thought until recently ...)
- If we measure the source redshift we can deduce the intrinsic mass of the source and resolve redshift_mass degeneracy
- Distance is strongly correlated with the unknown orbital inclination of the source with respect to line_of_sight

Hubble Constant from Advanced Detectors Without EM counterparts

• 25 events:

H₀= 69 ± 3 km s⁻¹ Mpc⁻¹ (~4% at 95% confidence)

50 events:

- $H_0 = 69 \pm 2 \text{ km s}^{-1} \text{ Mpc}^{-1}$ (~3% at 95% confidence)
- WMAP7+BAO+SnIa (Komatsu et al.,2011):

H_o= 70.2 ± 1.4 km s⁻¹ Mpc⁻¹ (~2% at 68% confidence)

Del Pozzo, arXiv1108.1317

Error in H₀ with Catalogue Size

Hubble Constant from Advanced Detectors Assuming short_hard_GRBs are binary neutron stars

we find that one year of observation should be enough to measure H_0 to an accuracy of ~ 1% if SHBs are dominated by beamed NS-BH binaries using the "full" network of LIGO, Virgo, AIGO, and LCGT—admittedly,

ET: Measuring Dark Energy and Dark Matter

- ET will observe 100's of binary neutron stars and GRB associations each year
- GRBs could give the host location and red_shift, GW observation provides DL

Class. Quantum Grav. 27 (2010) 215006

B S Sathyaprakash et al

Measuring w and its variation with z

Measuring a cosmological distance–redshift relationship using only gravitational wave observations of binary neutron star coalescences

C. Messenger

School of Physics and Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff, CF24 3AA*

J. Read

Department of Physics and Astronomy, The University of Mississippi, P.O. Box 1848, Oxford, Mississippi 38677-1848

Hubble without the Hubble: Cosmology using advanced gravitational-wave detectors alone

Stephen R. Taylor* Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Jonathan R. Gair[†] Institute of Astronomy, Madingley Road, Cambridge, CB3 0HA, UK

Ilya Mandel[‡] NSF Astronomy and Astrophysics Postdoctoral Fellow, MIT Kavli Institute, Cambridge, MA 02139; and School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT (Dated: January 31, 2012)

Messenger_Read Method: Make use of the post_Newtonian Tidal Term

K. G. Arun, B. R. Iyer, B. S. Sathyaprakash, and P. A. Sundararajan, Phys. Rev. D, **71**, 084008 (2005), arXiv:gr-qc/0411146.

$$\Psi_{PP}(f) = 2\pi f t_c - \phi_c - \frac{\pi}{4} + \frac{3}{128\eta x^{5/2}} \sum_{k=0}^{N} \alpha_k x^{k/2}$$

T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read, Phys. Rev. D, **81**, 123016 (2010), arXiv:0911.3535 [astro-ph.HE].

$$\Psi^{\text{tidal}}(f) = \sum_{a=1,2} \frac{3\lambda_a}{128\eta} \left[-\frac{24}{\chi_a} \left(1 + \frac{11\eta}{\chi_a} \right) \frac{x^{5/2}}{M^5} \right]$$

$$-\frac{5}{28\chi_a} \left(3179 - 919\chi_a - 2286\chi_a^2 + 260\chi_a^3 \right) \frac{x^{7/2}}{M^5}$$

$$x = (\pi M f)^{2/3}$$

$$\lambda = (2/3)R_{\text{ns}}^5 k_2$$
(3)

5

Cosmology with the lights off:

Distribution of Chirp Mass

$$\mathcal{M} \sim N(\mu_c, \sigma_c^2),$$

$$\mu_c \approx 2(0.25)^{3/5} \mu_{\rm NS}, \quad \sigma_c \approx \sqrt{2}(0.25)^{3/5} \sigma_{\rm NS},$$

$$\mu_{\rm NS} \in [1.0, 1.5] M_{\odot}, \, \sigma_{\rm NS} \in [0, 0.3] M_{\odot}$$

$$w(a) = w_0 + w_a(1-a),$$

 $w(z) = w_0 + w_a\left(\frac{z}{1+z}\right).$

Taylor, Gair, Mandel 2011, 2012

Measuring dark energy EoS and its variation with redshift

Host redshifts from gravitational wave observations

Messenger, Takami, Gossan, Rezzzolla, BSS, 2014

Black Hole Demographics

Advanced LIGO Distance Reach to Binary Coalescences

ET Distance Reach to Coalescing Binaries

ET Distance Reach to Coalescing Binaries

ET Distance Reach to Coalescing Binaries

Thursday, 17 April 2014

ETB, z=1 10^{3} 10 20 Visibility 30 of **Binary** 10^{2} 50 Inspirals 70 M_2/M_{\odot} in 60 80 Einstein 10 Telescope 40 20 10 10^{2} 10^{3} M_1/M_{\odot}

Thursday, 17 April 2014

Observing Intermediate_mass Black Hole Binaries

- Ultra-luminous X-ray sources might be hosting black holes of mass one thousand solar masses
- 100 solar mass black holes could be seeds of galaxy formation
- ET could observe black hole populations at different red_shifts and resolve questions about black hole demographics

Gravitational Wave Backgrounds

Sources Accessible from Space

Primordial Backgrounds

Thursday, 17 April 2014

GW observations tell us about ...

- Cosmography
 - Verify cosmic distance ladder, strengthen existing calibrations at high z
 - Measure the Hubble parameter, dark matter and dark energy densities, dark energy EoS w, variation of w with z
- Black hole seeds
 - Confirm the nature black hole seeds, their masses and demographics
 - Explore hierarchical growth of central engines of black holes
- Anisotropic cosmologies
 - In an anisotropic Universe the distribution of H on the sky should show residual quadrupole and higher_order anisotropies
- Primordial gravitational waves
 - Quantum fluctuations in the early Universe produces stochastic b/g
- Production of GW during early Universe phase transitions
 - Phase transitions, pre_heating, re_heating, etc., could produce detectable stochastic GW