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Simplicity may emerge tn asyweptotic situations




The QCD phase diagram
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QCD Fits
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Stages of nucleus-nucleus collisitons

Initial conditions. Fluctuations (geometry, nucleus
wave function and its parton content)

Particle (entropy) production. Involves mostly small x
partons (x=p./Vs~107-10" for p, =~2GeV)

One characteristic scale: saturation momentum (),

Thermalization. Quark-gluon plasma.
Hydrodynamical expansion

Hadronization in apparent chemical equilibrium.
Hadronic cascade till freeze-out.




Conditions are reached for the formation of
a quark-gluon plasma

Matter at freeze-out s in chemical equiLLbrium
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The conditions for the formation of a quark-gluon
plasma are reached in the early stages of the
collisions

order of magnitude estimate
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Matter at freeze-out

well described by a statistical picture
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Matter at freeze-out

well described by a statistical picture
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particle ratio

Matter at freeze-out

L o e o
well described by a statistical picture 1
0.15— —
= ]
1 S 01— —
= - i
T ™~ B i
E(EH_FL)XT + 1 0051~ "
D_IlllllllllllllllllllIIII_
0 02 04 0.6 0.8 1
My (GeV)
- Pb-Pb \?SNN;?Q]EG TeV - (from ). Cleymans et al, hep-ph/0511094)
_ I inian §
AT e
- LA ‘E E 210°F T —— =
- Prefiminary 1 2 Fas Pb-Pb (5y=2.76 TeV | 3
= f ]
102 —= > : i
- 3 ‘O
: [ A I T s | : E)_ 102 E_ - _E
_ ; g F s .
103 m | Data: ALICE, 0-20%i(prejiminary) — 5 " '"; ]
Ei —-i----i Model dalc. withiparametérs: R NS PO - 1ok -
- T=148 MeV, =+ 1 MeV fixed) - g 3
B T=164 MeVip =1 MgV i - s 1
10 : [ |
L+ g + B =it = It O TE 3
st Ki= pis Pz R - m Data, ALICE, 0-20%, preliminary | L, L, ]
[ Thermal model fit, x2/N,,=9.3 8 1
[ | T=164MeV, V=3855Q fm (1, 1 MeV fixed 1
107 " p—
T KKpPpPAZTZEIQQ o KO



Matter flows Like a flutol
The quark-gluon plasma as a nearly perfect fluid

Puzzles : \/'Lscositg, thermalization
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The perfect Liquid

Viscous corrections are small
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The small value of eta/s suggests a strongly
coupled liquid...
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Surprisiwg p-Pb collistons
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Is it hydrodynamics ?

Or evidence for CGC ?

Dumitru, Dusling, Gelis, Jalilian-Marian, Lappi, Venugopalan : 1009.5295
Dusling, Venugopalan:1211.3701






where is the apparent
strongly coupled character
of the RGP coming from ?
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ls tnitlal concept wrong ?

No...
RCP asywmptotic freedom works |

s the coupling constant Large ?

Not rea LLH |

s production of matter Ln heavy Lon colliston
compatible with strong coupling?

Not reaLLg (?)




- The strongly cowpled character of the quark-gluon plasma
does not seem related Ln any obvious way to a large value of
the coupling constant.

- Now perturbative features may arise from the cooperation of
many degrees of freedowm, or strong classieal fields.

- The quark-gluon plasma s a multiscale system (no ideal
plasma, wetther weakly wnor strongly coupled)

- Transport properties, thermalization remain challenging
lSSues.




Nuclet are made of densely packed gluons
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Statistical-classieal field simulations
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Signals from the early stages
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Hard probes

Hard probes are produced on short space time scales, and their production
rate can be calculated from pQCD

Hard probes are like test particles. The study of their propagation provides much
information about the medium in which they propagate.

Examples of hard probes: heavy quarks, quarkonia, photons, Z and W, jets...

Prospects for hard probes at the LHC are truly fascinating



havrd processes are uwnoer control
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Hard processes are not affected by the nuclear
environment, as expected.
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excited states are more ‘fragile’



Di—j et asymmetry

there is more to it than just 'jet quenching’...
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Subleading jet !
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of many soft quanta at large angles

We argue that this reflects a genuine feature of
the in-medium QCD cascade (IJPB, E. Iancu and

Y. Mehtar-Tani, arXiv: 1301.6102)
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MvLL‘clpLe branchings
(de)-coherence
Ln-medium cascade

Work done in collaboration with F. Dominguez, E. Iancu
and Y. Mehtar-Tani (arXiv:1209.4585, 1301.6102, 1311.5823)



The turbulent Ln-mediume RCD cascade

. Richardson cascade 1921
soft particles / large angle

Energy injection
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Energy flows from large to low frequencies and large
angles without accumulating (signature of wave
turbulence)

Efficient mechanism for energy transport at large angles



Evolution of the tnelustve spectrum
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What have we learned ?

A quark-gluon plasma is produced in ultra-relativistic heavy ion collisions,
whose global properties do not seem to change much between RHIC and

LHC (a liquid with low relative viscosity)

We have began to study the properties of this quark-gluon plasma

Modelling of collisions is greatly helped by the success of hydrodynamics
(although this success remains somewhat of a puzzle)

Early stages of the collisions may be amenable to first principle calculations

The LHC is offering new, precise (hard) probes to diagnose the QGP,
and new phenomena are being discovered

Much, much more remains to be learned !

The field has never been so exciting as now !





































