Pressure in QCD at finite μ : then and now

Saumen Datta, Rajiv Gavai, Sourendu Gupta

ILGTI, TIFR Mumbai

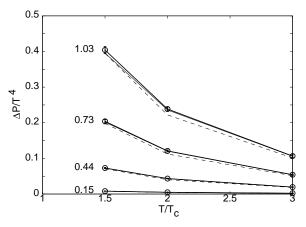
17 January, 2013 Matter in Extreme Conditions: Then and Now 2013 Bose Institute, Kolkata

3 Critical behaviour

Introduction	QNS	Criticality	Summary

3 Critical behaviour

EOS at $\mu \neq 0$



Gavai, SG: Phys.Rev. D68 (2003) 034506

$$\Delta P = P(\mu, T) - P(0, T).$$

Introduction	QNS	Criticality	Summary
The mathema	tical problem		

Perform a series expansion of the pressure in powers of chemical potential

$$\Delta P(\mu_u, \mu_d, T) = \sum_{m,n} \chi_{m,n}(T) \frac{\mu_u^m \mu_d^n}{m! n!}.$$

Does this converge? Can one reconstruct the function? Well studied classical problem. Special complications: few coefficients known, with errors.

Simplest part of the problem: estimate whether the series is summable, radius of convergence and location of nearest singularity. Next more complicated: estimating value of the function, nature of divergence.

Introduction	QNS	Criticality	Summary
The mathemat	cical problem		

Perform a series expansion of the pressure in powers of chemical potential

$$\Delta P(\mu_u, \mu_d, T) = \sum_{m,n} \chi_{m,n}(T) \frac{\mu_u^m \mu_d^n}{m! n!}.$$

Does this converge? Can one reconstruct the function? Well studied classical problem. Special complications: few coefficients known, with errors.

Simplest part of the problem: estimate whether the series is summable, radius of convergence and location of nearest singularity. Next more complicated: estimating value of the function, nature of divergence.

Also, expansion in $z = \mu_B/T$

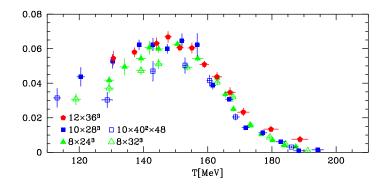
$$\chi_B(\mu_B, T) = \frac{\partial^2 \Delta P}{\partial \mu_B^2} = \chi_B^0(T) + \frac{T^2}{2!} \chi_B^2(T) z^2 + \frac{T^4}{4!} \chi_B^4(T) z^4 + \cdots$$

Lattice simulations with $N_f = 2$ staggered quarks and Wilson gauge action. Used $m_{\pi} \simeq 0.3 m_{\rho}$; spatial size L = 4/T.

Temperature scale, T_c , found by the point at which χ_L peaks. If $T_c \simeq 170$ MeV, then 1/a = 0.7 GeV, 1 GeV, 1.4 GeV for $N_t = 4$, 6 and 8.

Configurations: 50K+ at each coupling; large number of fermion sources used for determination of fermion traces. Partial statistics reported in: QM 2012, Lattice 2013 Datta, Gavai, SG: arXiv:1210.6784

This doubles the statistics reported in Lattice 2013.

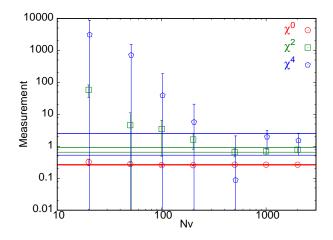


Broad crossover: even with one single measure (figure: chiral susceptibility) T_c uncertain by 20 MeV. Reflected in quoted values. Aoki, Borsanyi, Dürr, Fodor, Katz, Krieg, Szabo: JHEP 0906 (2009) 088 Select any definition and stick with it: we use Polyakov loop susceptibility.

QNS	Criticality	Summary

QNS	Criticality	Summary

Numerical errors

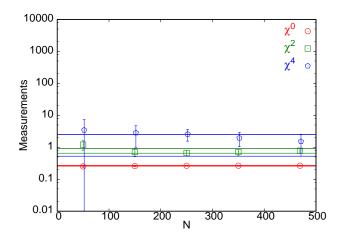


Errors depend on number of fermion sources for evaluation of propagator as well as number of gauge configurations. Multiple fermion loops are source hungry.

ILGTI

QNS	Criticality	

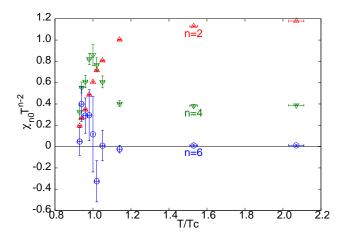
Numerical errors



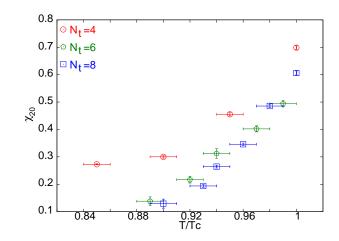
Errors depend on number of fermion sources for evaluation of propagator as well as number of gauge configurations. Multiple fermion loops are source hungry.

ILGTI

	QNS	Criticality	Summary
Susceptibilities at	$\mu = 0$		

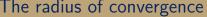


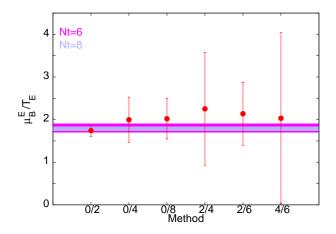
	QNS	Criticality	Summary
Nearing continuum	physics		



Redoing $N_t = 4$ with more data to check whether there is any improvement.

	QNS	Criticality	Summary
The radius of c	onvergence		





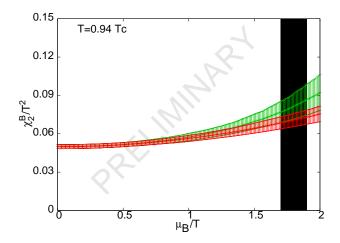
For $N_t = 6$, $\mu_E/T_E = 1.7 \pm 0.1$ Gavai, SG: 2008

QNS	Criticality	Summary

3 Critical behaviour

	QNS	Criticality	Summary
N.4			

Must resum a series expansion



Truncated series sum is regular even at the radius of convergence, so is missing something important.

At a critical point

$$\chi_B = \frac{\partial^2 (P/T^4)}{\partial z^2} \simeq (z_*^2 - z^2)^{-\psi}.$$

Continuity and finiteness of P at the CEP forces $\psi \leq 1$.

Since

$$m_1(z) = rac{d\log\chi_B}{dz} \simeq rac{2\psi z}{z_*^2 - z^2},$$

use the series to estimate the critical exponent. Series for m_1 has one term less than series for χ_B . Accurate results require fine statistical control of at least 3 series coefficients of χ_B : 2 of m_1 .

From the Padé approximant to $m_1(z)$, integrate to find χ_B and again twice to find ΔP .

Critical behaviour of m_1

If $\chi_B(z) \simeq (z_* - z)^{-\psi}$, then $m_1 = d \log \chi_B/dz$ has a pole. Series expansion of χ_B gives series for m_1 . Resum series into a Padé approximant:

$$[0,1]:$$
 $m_1(z) = \frac{c}{z_*-z}$

Width of the critical region? If we define it by

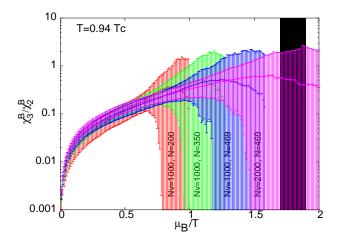
$$\left|\frac{m_1(z)}{m_1(0)}\right| > \Lambda,$$

then $|z - z_*| \le z_*/\Lambda$. If δ is fractional error in measurement of z_* , then error in Padé? Easy to check

$$\left|\frac{\Delta m_1}{m_1}\right| > \frac{1}{1-\Lambda\delta}.$$

QNS	Criticality	Summary

Critical slowing down



	QNS	Criticality	Summary
Widom scaling			

Widom scaling for the order parameter gives

$$\Delta \mu | = |\Delta n|^{\delta} J\left(\frac{|\Delta T|}{|\Delta n|^{1/\beta}}\right),$$

where $\Delta T = T - T_E$ and $\Delta \mu = \mu - \mu_E$. For $\Delta T = 0$ one finds $\Delta n \propto |\Delta \mu|^{1/\delta}$ in the high density phase. Then clearly one has

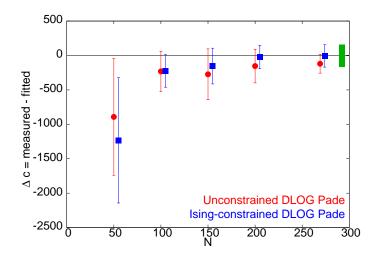
$$\psi = 1 - \frac{1}{\delta}.$$

For the 3d Ising model, $\delta = 1.49$, so $\psi = 0.79$. In mean field theory one has $\delta = 3$, so $\psi = 0.66$. Our computations consistent with both: cannot distinguish between them yet.

The order parameter could be a mixture of energy density and number density. Then these arguments are limiting cases, and one gets $0.79 \le \psi \le 1$ (3d Ising) or $0.66 \le \psi \le 1$ (MFT).

QNS	Criticality	

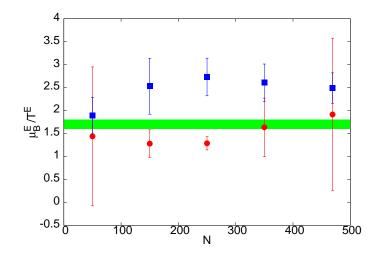
Testing the DLOG Pade



Padé uses 2 terms of the series for m_1 . Does it predict the 3rd?

QNS	Criticality	Summary

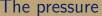
Pole and residue

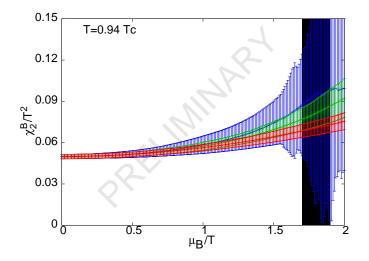


Position of pole agrees with radius of convergence.

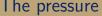
ILGTI Pressure in QCD at finite μ : then and now

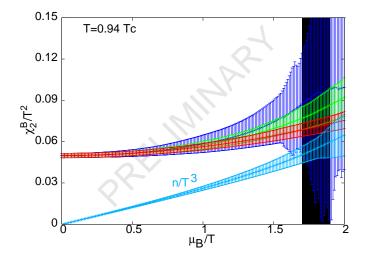
	QNS	Criticality	Summary
The process			



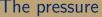


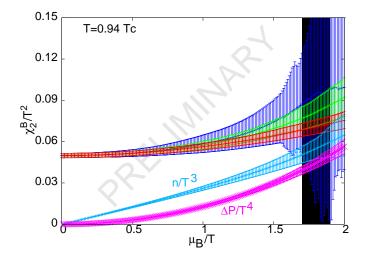
	QNS	Criticality	
The museums			



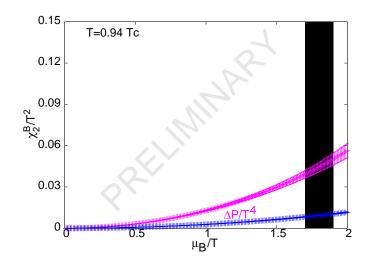


	QNS	Criticality	
T 1			





	QNS	Criticality	Summary
The pressure			



1 Introduction

2 The susceptibilities

3 Critical behaviour

Critical point and the pressure

- QNS require huge CPU expenses; we have up to the 8th order. Momentum cutoff of 0.7 GeV, 1 GeV and 1.4 GeV. Able to see the approach to the renormalized values: $T^{E} \simeq 0.94 T_{c}, \ \mu_{B}^{E}/T^{E} \simeq 1.7.$
- When the series diverges then ΔP at finite μ_B cannot be obtained from a partial resummation of the series.
- Since $\chi_B \simeq |\mu_B \mu_B^E|^{-\psi}$, the ratio $m_1 = \chi'_B / \chi_B$ has a simple pole. Resum the series expansion into a simple pole. Integrate this to find χ_B and ΔP . First results for pressure at finite μ_B are reported.
- Lattice uses m₁ along a path of constant T and varying μ_B.
 Event-to-event fluctuations of baryon number can measure m₁ along the freezeout curve.