



# What have we learned from angular correlation studies in p-Pb collisions?



Panos Christakoglou (Nikhef)

On behalf of the ALICE Collaboration











- ...a baseline measurement for heavy-ion collisions...







- ...a baseline measurement for heavy-ion collisions...
- To a crucial test of cold nuclear matter effects...







- ...a baseline measurement for heavy-ion collisions...
- To a crucial test of cold nuclear matter effects...
- Reaching the level of producing astonishing new results









# Near side ridge in p-Pb







Near side ridge in p-Pb



Near side ridge in pp













#### Sizable v<sub>2</sub> and v<sub>3</sub> components in p-Pb















### **Experimental setup**







# **Multiplicity classes in p-Pb**





- Centrality determination in p-Pb is not as straightforward as in Pb-Pb
  - ★ Weak correlation between parameters like
    - impact parameter and number of participants
    - onumber of participants and multiplicity
- Define event classes based on
  - ★ multiplicity measurement from central detectors (e.g. CMS)
  - ★ multiplicity measurement from forward detectors (e.g. ALICE)
  - ★ calorimetry (e.g. ATLAS)





















Near side ridge is observed in high multiplicity p-Pb collisions









#### ALICE Collaboration: Phys. Lett. B719, (2013) 29





- Near side ridge is observed in high multiplicity p-Pb collisions
- Subtraction of the jet component i.e. as measured in the 60-100% multiplicity class reveals
  - ★ a double symmetric ridge on the near and the away side!



# **Double ridge in p-Pb: Fourier decomposition**





- Fourier decomposition using the 2<sup>nd</sup> and the 3<sup>rd</sup> harmonic
- $\sim$  v<sub>2</sub> and v<sub>3</sub> increase with increasing p<sub>T</sub>, while exhibiting a mild multiplicity dependence



# **Double ridge in p-Pb: Fourier decomposition**









In qualitative agreement with hydro (P. Bozek and W. Broniowski, Phys.Lett. B718, (2013) 1557) and CGC calculations

K.Dusling and R. Venugopalan, Phys.Rev. D87, (2013) 094034



Relative good agreement, however no v<sub>3</sub> component

Can we learn more from data?











# Associated yield per trigger: π-h, K-h, p-h





- Similar analysis: charged particle  $\Rightarrow$  "trigger", ( $\pi$ ,K,p)  $\Rightarrow$  "associated"
- Jet component reduction: (0-20)% (60-100)%
- Symmetric ridges in all cases i.e. π-h, K-h, p-h
  - **\star** Residual near side jet peak for  $\pi$ -h and to a smaller extent K-h

ALICE Collaboration: Phys. Lett. B726, (2013) 164



#### **Fourier decomposition**





$$\frac{1}{N_{trig.}} \frac{dN_{assoc}}{d\Delta\phi} = a_0 + 2a_1 cos(\Delta\phi) + 2a_2 cos(2\Delta\phi) + 2a_3 cos(3\Delta\phi)$$

- After subtraction: symmetric double ridges for h- $\pi$ , h-K, h-p
- Small contribution from the odd coefficients

ALICE Collaboration: Phys. Lett. B726, (2013) 164







Mass splitting observed in p-Pb collisions!

ALICE Collaboration: Phys. Lett. B726, (2013) 164







- Mass splitting observed in p-Pb collisions!
- Qualitatively similar picture as in Pb-Pb
  - Qualitatively consistent with a system that develops some degree of collective behaviour
    ALICE Collaboration: Phys. Lett. B726, (2013) 164

















#### Balance functions in p-Pb: low $p_T$ region



 $p-Pb \sqrt{s_{NN}} = 5.02 \text{ TeV}$ 





#### Solution Evident multiplicity dependence in both $\Delta \eta$ and $\Delta \phi$



#### Balance functions in p-Pb: low p<sub>T</sub> region



p-Pb \ *s*<sub>NN</sub> = 5.02 TeV





#### Narrower distributions for collision data wrt DPMJET



#### Balance functions in p-Pb: low p<sub>T</sub> region







#### Solution Evident multiplicity dependence in both $\Delta \eta$ and $\Delta \phi$ not reproduced by DPMJET









#### Multiplicity dependence in both $\Delta \eta$ and $\Delta \phi$ appear only in the low $p_T$ region



#### Is it hydrodynamic flow...?

















My two cents: Still I have to admit that it becomes less likely to be a cat that knows "foreign languages"











# BACKUP



#### Balance functions in p-Pb: low p<sub>T</sub> region





#### Solution Evident multiplicity dependence in both $\Delta \eta$ and $\Delta \phi$ not reproduced by DPMJET