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Introduction

@ Hydrodynamics: An effective theory describing the long-wavelength,
low-frequency limit of the microscopic dynamics of a system.

@ Applied quite successfully to study ultra-relativistic heavy-ion
collisions; Elegant framework to study the effects of EOS.

@ The theory is formulated as an order-by-order expansion in gradients
of velocity with ideal hydro being zeroth-order.

@ First-order relativistic Navier-Stokes theory has acausal behaviour
which is rectified in second-order Israel-Stewart theory.

@ Inconsistencies and approximations in IS formulation and application:

e Use of second moment of Boltzmann equation.

Grad's 14 moment approximation.
o Violation of experimentally observed 1/,/m7 scaling of the HBT radii.

e Show disagreement with transport results.

Amaresh Jaiswal International Conference on Matter at Extreme Conditions : Then & Now Slide 2 of 14



Relativistic viscous hydrodynamics

@ The hydrodynamic evolution of a system is governed by the
conservation equations for energy and momentum, 9, T#” = 0.

@ In terms of single-particle phase-space distribution function f(x, p),

THY :/dp ptp” f(x,p) = eutu” — PAM + 7H

dp = gdp/[(27)3|p|], (g: degeneracy factor)

p": particle four-momentum

u*: fluid four-velocity

o AW = ghv — yty”

@ For a system close to equilibrium, f = fy + §f,

T = Agg/dppapﬁ of

aff —
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Viscous evolution equation

o 6f =6f() 4 5F( 4 ... can be obtained from BE in RTA:
f—f

TR

pOuf = —(u-p) = f=fo- %p“auf

@ Solving iteratively, [A. Jaiswal, Phys. Rev. C 87, 051901(R) (2013)]

sFL) — "R POy ; SF2) — T—Rp”p”8M<T—RaVﬁ)>
u-p u-p u-p

e For 6f = 6f(), we obtain, 7/ = 2not, n=1RBr, Bz =4P/5.

o For 6f = 6 4+ §f(D | [A. Jaiswal, Phys. Rev. C 88, 021903(R) (2013)]

i) ™ _ 280" + 2t — Ewwauw _ fﬂum
Tr v 77 3

Tr = TR, U“l’:v<“u”>5 Aggvauﬁy OJ‘L“/E(V”UV—VVU”)/Z \VE A*”‘ay
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Viscous corrections to the distribution function

o In terms of the dissipative quantities, 6f(1) and 6f(2) can be expressed
as [R. S. Bhalerao, A. Jaiswal, S. Pal and V. Sreekanth, arXiv:1312.1864]

fo3
0 = 52— p*p’ma
2/87T(U'p) g
fo8 | Tn 5 Tr
Sh=——— |- p*p’nlwsy — — 77— PP’ + o p*p a0
2T Be lup T 148, (up) P P T T 3(uep) g
6T . (u-p) 3. .
_OTr a8 LaB T a( B ) T ppBpY

5puwa+7oﬁﬁ Tapt o P (VT (up P P P masth

_l’_

ot o |

T anb (v _
2w p2 PP (VATap) Hu-p)2g. \P P T

@ For comparison, Grad's 14-moment approximation for 0f:

fo 32
fr = B
ofc = 105ﬂpp aB
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Pion transverse momentum spectra

= TTT I LU I TT 1T I TTTT I LU I TTT I:
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First-order and second-order CE shows convergence.
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Longitudinal HBT radii
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() ="1

6R0)" = =
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Grad's 14 moment approximation violates 1/,/m7 scaling while CE does not.
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Pressure anisotropy in Bjorken evolution
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o P /Pr=(P-m)/(P+m/2)

First-order and second-order CE shows convergence.
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Bjorken expansion

T 8 4 T 2
T T3r T BrT
T = T2

Tﬂ:n/ﬁﬂ'v 571':4'13/5

A = 38/21: Second-order
coefficient.

A5 = 2: Second-order IS
coefficient.

X = 36/175: Heuristic
higher-order correction.
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Third-order evolution equation for shear stress tensor

@ To obtain the third-order evolution equation of 7,
T = Agg/dppapﬁ §F = )= Agg/dppo‘p'g 6f

o From BE in RTA, we obtain 6f = —fy — (p'V.,f)/u-p — 6f /Tr

@ Substituting §f = §f; + 0f [A. Jaiswal, Phys. Rev. C 88, 021903(R) (2013)]
1 4
+ 2B 0" + 27r,<y“w”>7 - 707T,<Y“UV>7 - 57#“’9

™
125 y 1 38 . 22

[ﬂpww M”p’y _ gﬂéuﬂ)w_ %Wu TP 0 y — 497r”<“7r”>70m]

26 2 2 10

ﬁwéﬁthWg — ,wpmwl/)vwm_ ?mewuwwm_ 6377‘“/02}
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Pressure anisotropy in Bjorken evolution: Third-order

Bjorken expansion

1 4 2
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Third-order shows Improved agreement with exact solution of BE.
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Comparison of pressure anisotropy with BAMPS

1Eg ITIII—ISI(I)(I)II\I/IIeI\III '1.' Toatne T 4 Third-order from entropy:
5 B [A. El, Z. Xu and C. Greiner, Phys.
C M/s=0.05 1
0.8 — Rev. C 81, 041901(R) (2010)]
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Third-order from kinetic theory shows better agreement with BAMPS.
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Conclusions

@ Derived the expression for the viscous corrections to the distribution
function up to second-order (alternative to Grad's approximation).

@ These corrections does not violate the experimentally observed
1//mt scaling of the HBT radii and shows convergence.

@ Derived evolution equation for shear stress tensor, directly from its
definition, up to third-order (without using second moment of BE).

@ Second-order hydrodynamic equations derived here results in better
agreement with transport calculation (BAMPS) compared to IS.

@ Third-order hydrodynamic evolution shows improved agreement with
exact solution of BE compared to second-order.

@ Third-order hydrodynamic equation derived here also shows better
agreement with BAMPS compared to third-order from entropy.
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THANK YOU
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Backup slide: Bjorken Flow (1 o Bjorken, Phys rev D 27, 140 (1983)]

@ In Milne coordinates: proper time 7 = v/t2 — z2, spacetime rapidity
ns = tanh~1(z/t), t = T coshns, z = 7sinh 7, and the metric is given
by g =diag(1, -1, -1, —72).

@ Boost invariance (vZ = z/t) for hydro translates into

.t zo _utSi”hns+uzC°5h775 =0 = u"=(1,0,0,0)

T T p
@ In centre of the fireball, stress energy tensor in local comoving frame
has the form: TH = diag(e, Pr, Pr, PL).
Py P—r

Pr=P4+n/2 : P =P—gq : L _"7"T
T=Ptm/2 5 P T P T Pra2

@ The evolution equations for € and 7 = —727"" becomes
de 1
—=——(e+P—m
dr T ( ),

s 7T2

dr 7 37 T X@FT
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