

Relativistic third-order viscous hydrodynamics from kinetic theory

Amaresh Jaiswal

Department of Nuclear and Atomic Physics

Tata Institute of Fundamental Research

January 16, 2014

Amaresh Jaiswal

International Conference on Matter at Extreme Conditions : Then & Now

Slide 1 of 14

Introduction

- Hydrodynamics: An effective theory describing the long-wavelength, low-frequency limit of the microscopic dynamics of a system.
- Applied quite successfully to study ultra-relativistic heavy-ion collisions; Elegant framework to study the effects of EOS.
- The theory is formulated as an order-by-order expansion in gradients of velocity with ideal hydro being zeroth-order.
- First-order relativistic Navier-Stokes theory has acausal behaviour which is rectified in second-order Israel-Stewart theory.
- Inconsistencies and approximations in IS formulation and application:
 - Use of second moment of Boltzmann equation.
 - Grad's 14 moment approximation.
 - Violation of experimentally observed $1/\sqrt{m_T}$ scaling of the HBT radii.
 - Show disagreement with transport results. ${}_{<\,\square\,\rightarrow\,<\,\square\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\blacksquare\,\rightarrow\,<\,\square\,\rightarrow\,<\,\square\,\rightarrow\,$

Relativistic viscous hydrodynamics

- The hydrodynamic evolution of a system is governed by the conservation equations for energy and momentum, $\partial_{\mu}T^{\mu\nu} = 0$.
- In terms of single-particle phase-space distribution function f(x, p), $T^{\mu\nu} = \int dp \ p^{\mu} p^{\nu} f(x, p) = \epsilon u^{\mu} u^{\nu} - P \Delta^{\mu\nu} + \pi^{\mu\nu}$
 - $dp \equiv g d\mathbf{p}/[(2\pi)^3 |\mathbf{p}|]$, (g: degeneracy factor)
 - p^{μ} : particle four-momentum
 - u^{μ} : fluid four-velocity
 - $\Delta^{\mu\nu} \equiv g^{\mu\nu} u^{\mu}u^{\nu}$
- For a system close to equilibrium, $f = f_0 + \delta f$,

$$\pi^{\mu\nu} = \Delta^{\mu\nu}_{\alpha\beta} \int dp \, p^{\alpha} p^{\beta} \, \delta f$$
$$\Delta^{\mu\nu}_{\alpha\beta} \equiv \frac{1}{2} \left[\Delta^{\mu}_{\alpha} \Delta^{\nu}_{\beta} + \Delta^{\mu}_{\beta} \Delta^{\nu}_{\alpha} - (2/3) \Delta^{\mu\nu}_{\beta} \Delta_{\alpha\beta} \right]_{\text{Bind}}$$

Amaresh Jaiswal

International Conference on Matter at Extreme Conditions : Then & Now

SOA

Viscous evolution equation

• $\delta f = \delta f^{(1)} + \delta f^{(2)} + \cdots$ can be obtained from BE in RTA: $p^{\mu}\partial_{\mu}f = -(u \cdot p)\frac{f - f_0}{\tau_R} \Rightarrow f = f_0 - \frac{\tau_R}{u \cdot p}p^{\mu}\partial_{\mu}f$

Solving iteratively, [A. Jaiswal, Phys. Rev. C 87, 051901(R) (2013)]

$$\delta f^{(1)} = -\frac{\tau_R}{u \cdot p} p^{\mu} \partial_{\mu} f_0 ; \qquad \delta f^{(2)} = \frac{\tau_R}{u \cdot p} p^{\mu} p^{\nu} \partial_{\mu} \left(\frac{\tau_R}{u \cdot p} \partial_{\nu} f_0 \right)$$

• For $\delta f = \delta f^{(1)}$, we obtain, $\pi^{\mu\nu} = 2\eta\sigma^{\mu\nu}$, $\eta = \tau_R\beta_\pi$, $\beta_\pi = 4P/5$.

• For $\delta f = \delta f^{(1)} + \delta f^{(2)}$, [A. Jaiswal, Phys. Rev. C 88, 021903(R) (2013)]

$$\dot{\pi}^{\langle\mu\nu\rangle} + \frac{\pi^{\mu\nu}}{\tau_{\pi}} = 2\beta_{\pi}\sigma^{\mu\nu} + 2\pi_{\gamma}^{\langle\mu}\omega^{\nu\rangle\gamma} - \frac{10}{7}\pi_{\gamma}^{\langle\mu}\sigma^{\nu\rangle\gamma} - \frac{4}{3}\pi^{\mu\nu}\theta$$

 $\tau_{\pi} = \tau_{R}, \quad \sigma^{\mu\nu} = \nabla^{\langle \mu} u^{\nu \rangle} \equiv \Delta^{\mu\nu}_{\alpha\beta} \nabla^{\alpha} u^{\beta}, \quad \omega^{\mu\nu} \equiv (\nabla^{\mu} u^{\nu} - \nabla^{\nu} u^{\mu})/2, \quad \nabla^{\mu} \equiv \Delta^{\mu\nu} \partial_{\nu}$

Amaresh Jaiswal

Viscous corrections to the distribution function

• In terms of the dissipative quantities, $\delta f^{(1)}$ and $\delta f^{(2)}$ can be expressed as [R. S. Bhalerao, A. Jaiswal, S. Pal and V. Sreekanth, arXiv:1312.1864]

$$\delta f_1 = rac{f_0eta}{2eta_\pi(u\!\cdot\!p)}\,p^lpha p^eta\pi_{lphaeta}$$

$$\begin{split} \delta f_{2} &= -\frac{f_{0}\beta}{\beta_{\pi}} \left[\frac{\tau_{\pi}}{u \cdot p} p^{\alpha} p^{\beta} \pi_{\alpha}^{\gamma} \omega_{\beta\gamma} - \frac{5}{14\beta_{\pi}(u \cdot p)} p^{\alpha} p^{\beta} \pi_{\alpha}^{\gamma} \pi_{\beta\gamma} + \frac{\tau_{\pi}}{3(u \cdot p)} p^{\alpha} p^{\beta} \pi_{\alpha\beta} \theta \right. \\ &\left. - \frac{6\tau_{\pi}}{5} p^{\alpha} \dot{u}^{\beta} \pi_{\alpha\beta} + \frac{(u \cdot p)}{70\beta_{\pi}} \pi^{\alpha\beta} \pi_{\alpha\beta} + \frac{\tau_{\pi}}{5} p^{\alpha} \left(\nabla^{\beta} \pi_{\alpha\beta} \right) - \frac{3\tau_{\pi}}{(u \cdot p)^{2}} p^{\alpha} p^{\beta} p^{\gamma} \pi_{\alpha\beta} \dot{u}_{\gamma} \right. \\ &\left. + \frac{\tau_{\pi}}{2(u \cdot p)^{2}} p^{\alpha} p^{\beta} p^{\gamma} (\nabla_{\gamma} \pi_{\alpha\beta}) - \frac{\beta + (u \cdot p)^{-1}}{4(u \cdot p)^{2} \beta_{\pi}} \left(p^{\alpha} p^{\beta} \pi_{\alpha\beta} \right)^{2} \right] \end{split}$$

• For comparison, Grad's 14-moment approximation for δf :

$$\delta f_{G} = \frac{f_{0}\beta^{2}}{10\beta_{\pi}} \, p^{\alpha} p^{\beta} \pi_{\alpha\beta}$$

Amaresh Jaiswal

International Conference on Matter at Extreme Conditions : Then & Now

Slide 5 of 14

Pion transverse momentum spectra

First-order and second-order CE shows convergence.

International Conference on Matter at Extreme Conditions : Then & Now

Longitudinal HBT radii

Grad's 14 moment approximation violates $1/\sqrt{m_T}$ scaling while CE does not.

Pressure anisotropy in Bjorken evolution

•
$$P_L/P_T \equiv (P - \pi)/(P + \pi/2)$$

Bjorken expansion

$$\frac{d\pi}{d\tau} = -\frac{\pi}{\tau_{\pi}} + \beta_{\pi} \frac{4}{3\tau} - \lambda \frac{\pi}{\tau} - \chi \frac{\pi^2}{\beta_{\pi} \tau}$$

•
$$\pi \equiv -\tau^2 \pi^{\eta_s \eta_s}$$

•
$$au_{\pi} = \eta/eta_{\pi}$$
, $eta_{\pi} = 4P/5$

- λ = 38/21: Second-order coefficient.
- $\lambda^{\rm IS} = 2$: Second-order IS coefficient.
- $\chi = 36/175$: Heuristic higher-order correction.

First-order and second-order CE shows convergence.

International Conference on Matter at Extreme Conditions : Then & Now

Third-order evolution equation for shear stress tensor

• To obtain the third-order evolution equation of $\pi^{\mu\nu}$,

$$\pi^{\mu
u} = \Delta^{\mu
u}_{lphaeta} \int dp \, p^{lpha} p^{eta} \, \delta f \quad \Rightarrow \quad \dot{\pi}^{\langle\mu
u
angle} = \Delta^{\mu
u}_{lphaeta} \int dp \, p^{lpha} p^{eta} \, \delta \dot{f}$$

• From BE in RTA, we obtain $\delta \dot{f} = -\dot{f}_0 - (p^{\gamma} \nabla_{\gamma} f)/u \cdot p - \delta f/\tau_R$

• Substituting $\delta f = \delta f_1 + \delta f_2$ [A. Jaiswal, Phys. Rev. C 88, 021903(R) (2013)]

$$\begin{split} \dot{\pi}^{\langle\mu\nu\rangle} &= -\frac{\pi^{\mu\nu}}{\tau_{\pi}} + 2\beta_{\pi}\sigma^{\mu\nu} + 2\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma} - \frac{10}{7}\pi^{\langle\mu}_{\gamma}\sigma^{\nu\rangle\gamma} - \frac{4}{3}\pi^{\mu\nu}\theta \\ &+ \frac{1}{\beta_{\pi}} \bigg[\frac{25}{7}\pi^{\rho\langle\mu}\omega^{\nu\rangle\gamma}\pi_{\rho\gamma} - \frac{1}{3}\pi^{\langle\mu}_{\gamma}\pi^{\nu\rangle\gamma}\theta - \frac{38}{245}\pi^{\mu\nu}\pi^{\rho\gamma}\sigma_{\rho\gamma} - \frac{22}{49}\pi^{\rho\langle\mu}\pi^{\nu\rangle\gamma}\sigma_{\rho\gamma} \bigg] \\ &+ \tau_{\pi} \bigg[\frac{26}{21}\pi^{\langle\mu}_{\gamma}\omega^{\nu\rangle\gamma}\theta - \frac{2}{7}\omega^{\rho\langle\mu}\omega^{\nu\rangle\gamma}\pi_{\rho\gamma} - \frac{2}{7}\pi^{\rho\langle\mu}\omega^{\nu\rangle\gamma}\omega_{\rho\gamma} - \frac{10}{63}\pi^{\mu\nu}\theta^2 \bigg] \\ &- \frac{24}{35}\nabla^{\langle\mu}\left(\pi^{\nu\rangle\gamma}\dot{u}_{\gamma}\tau_{\pi}\right) + \frac{4}{35}\nabla^{\langle\mu}\left(\tau_{\pi}\nabla_{\gamma}\pi^{\nu\rangle\gamma}\right) - \frac{2}{7}\nabla_{\gamma}\left(\tau_{\pi}\nabla^{\langle\mu}\pi^{\nu\rangle\gamma}\right) \\ &+ \frac{12}{7}\nabla_{\gamma}\left(\tau_{\pi}\dot{u}^{\langle\mu}\pi^{\nu\rangle\gamma}\right) - \frac{1}{7}\nabla_{\gamma}\left(\tau_{\pi}\nabla^{\gamma}\pi^{\langle\mu\nu\rangle}\right) \\ &+ \frac{6}{7}\nabla_{\gamma}\left(\tau_{\pi}\dot{u}^{\gamma}\pi^{\langle\mu\nu\rangle}\right) \\ &= 0.02 \end{split}$$

$$Maresh Jaiswal \qquad International Conference on Matter at Extreme Conditions : The & Now \qquad Slide 9 of 14 \end{split}$$

Pressure anisotropy in Bjorken evolution: Third-order

Third-order shows Improved agreement with exact solution of BE.

Amaresh Jaiswal

International Conference on Matter at Extreme Conditions : Then & Now

Comparison of pressure anisotropy with BAMPS

Third-order from kinetic theory shows better agreement with BAMPS.

Conclusions

- Derived the expression for the viscous corrections to the distribution function up to second-order (alternative to Grad's approximation).
- These corrections does not violate the experimentally observed $1/\sqrt{m_T}$ scaling of the HBT radii and shows convergence.
- Derived evolution equation for shear stress tensor, directly from its definition, up to third-order (without using second moment of BE).
- Second-order hydrodynamic equations derived here results in better agreement with transport calculation (BAMPS) compared to IS.
- Third-order hydrodynamic evolution shows improved agreement with exact solution of BE compared to second-order.
- Third-order hydrodynamic equation derived here also shows better agreement with BAMPS compared to third-order from entropy.

THANK YOU

Amaresh Jaiswal International Conference on Matter at Extreme Conditions : Then & Now

 $\exists \rightarrow$

Backup slide: Bjorken Flow [J. D. Bjorken, Phys. Rev. D 27, 140 (1983)]

• In Milne coordinates: proper time $\tau = \sqrt{t^2 - z^2}$, spacetime rapidity $\eta_s = \tanh^{-1}(z/t)$, $t = \tau \cosh \eta_s$, $z = \tau \sinh \eta_s$ and the metric is given by $g_{\mu\nu} = \text{diag}(1, -1, -1, -\tau^2)$.

• Boost invariance $(v^z = z/t)$ for hydro translates into

$$u^t = rac{t}{ au}, \ \ u^z = rac{z}{ au}, \ \ u^{\eta_s} = -u^t rac{\sinh \eta_s}{ au} + u^z rac{\cosh \eta_s}{ au} = 0 \ \Rightarrow \ u^\mu = (1, 0, 0, 0)$$

• In centre of the fireball, stress energy tensor in local comoving frame has the form: $T^{\mu\nu} = diag(\epsilon, P_T, P_T, P_L)$.

$$P_T = P + \pi/2$$
; $P_L = P - \pi$; $\frac{P_L}{P_T} = \frac{P - \pi}{P + \pi/2}$

• The evolution equations for ϵ and $\pi \equiv -\tau^2 \pi^{\eta_s \eta_s}$ becomes

$$\frac{d\epsilon}{d\tau} = -\frac{1}{\tau} \left(\epsilon + P - \pi\right),$$

$$\frac{d\pi}{d\tau} = -\frac{\pi}{\tau_{\pi}} + \beta_{\pi} \frac{4}{3\tau} - \lambda \frac{\pi}{\tau} - \chi \frac{\pi^2}{\beta_{\pi} \tau}$$

Amaresh Jaiswal

International Conference on Matter at Extreme Conditions : Then & Now

Slide 14 of 14