
Relativistic third-order viscous hydrodynamics from
kinetic theory

Amaresh Jaiswal

Department of Nuclear and Atomic Physics

Tata Institute of Fundamental Research

January 16, 2014

Amaresh Jaiswal International Conference on Matter at Extreme Conditions : Then & Now Slide 1 of 14



Introduction

Hydrodynamics: An effective theory describing the long-wavelength,
low-frequency limit of the microscopic dynamics of a system.

Applied quite successfully to study ultra-relativistic heavy-ion
collisions; Elegant framework to study the effects of EOS.

The theory is formulated as an order-by-order expansion in gradients
of velocity with ideal hydro being zeroth-order.

First-order relativistic Navier-Stokes theory has acausal behaviour
which is rectified in second-order Israel-Stewart theory.

Inconsistencies and approximations in IS formulation and application:

Use of second moment of Boltzmann equation.

Grad’s 14 moment approximation.

Violation of experimentally observed 1/
√
mT scaling of the HBT radii.

Show disagreement with transport results.
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Relativistic viscous hydrodynamics

The hydrodynamic evolution of a system is governed by the
conservation equations for energy and momentum, ∂µT

µν = 0.

In terms of single-particle phase-space distribution function f (x , p),

Tµν =

∫
dp pµpν f (x , p) = εuµuν − P∆µν + πµν

dp ≡ gdp/[(2π)3|p|], (g : degeneracy factor)

pµ: particle four-momentum

uµ: fluid four-velocity

∆µν ≡ gµν − uµuν

For a system close to equilibrium, f = f0 + δf ,

πµν = ∆µν
αβ

∫
dp pαpβ δf

∆µν
αβ ≡

1

2

[
∆µ

α∆ν
β + ∆µ

β∆ν
α − (2/3)∆µν∆αβ

]
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Viscous evolution equation

δf = δf (1) + δf (2) + · · · can be obtained from BE in RTA:

pµ∂µf = −(u ·p)
f − f0
τR

⇒ f = f0 −
τR
u ·p

pµ∂µf

Solving iteratively, [A. Jaiswal, Phys. Rev. C 87, 051901(R) (2013)]

δf (1) = − τR
u ·p

pµ∂µf0 ; δf (2) =
τR
u ·p

pµpν∂µ
( τR
u ·p

∂ν f0
)

For δf = δf (1), we obtain, πµν = 2ησµν , η = τRβπ, βπ = 4P/5.

For δf = δf (1) + δf (2), [A. Jaiswal, Phys. Rev. C 88, 021903(R) (2013)]

π̇〈µν〉 +
πµν

τπ
= 2βπσ

µν + 2π〈µγ ω
ν〉γ − 10

7
π〈µγ σ

ν〉γ − 4

3
πµνθ

τπ = τR , σµν=∇〈µuν〉≡∆µν
αβ∇

αuβ, ωµν≡(∇µuν−∇νuµ)/2, ∇µ≡∆µν∂ν
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Viscous corrections to the distribution function

In terms of the dissipative quantities, δf (1) and δf (2) can be expressed
as [R. S. Bhalerao, A. Jaiswal, S. Pal and V. Sreekanth, arXiv:1312.1864]

δf1 =
f0β

2βπ(u ·p)
pαpβπαβ

δf2 =− f0β

βπ

[
τπ
u ·p

pαpβπγα ωβγ −
5

14βπ(u ·p)
pαpβπγα πβγ +

τπ
3(u ·p)

pαpβπαβθ

− 6τπ
5

pαu̇βπαβ+
(u ·p)

70βπ
παβπαβ+

τπ
5
pα
(
∇βπαβ

)
− 3τπ

(u ·p)2
pαpβpγπαβ u̇γ

+
τπ

2(u ·p)2
pαpβpγ(∇γπαβ)−

β+(u ·p)−1

4(u ·p)2βπ

(
pαpβπαβ

)2]
For comparison, Grad’s 14-moment approximation for δf :

δfG =
f0β

2

10βπ
pαpβπαβ
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Pion transverse momentum spectra
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pµdΣµf (x , p)

pT : Particle transverse
momentum.

y : Particle rapidity.

dΣµ: Element of the
three-dimensional
freezeout hypersurface.

First-order and second-order CE shows convergence.
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Longitudinal HBT radii
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(
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)(0)
=
τ2T

mT

(
δR2

L

)(1)
= − 5τ2Tπ

4βπmT

(
δR2

L

)(G)
= − τ2Tπ

5βπmT

(
3 +

mT

T

)

Grad’s 14 moment approximation violates 1/
√
mT scaling while CE does not.
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Pressure anisotropy in Bjorken evolution
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PL/PT ≡ (P − π)/(P + π/2)

Bjorken expansion

dπ

dτ
= − π

τπ
+βπ

4

3τ
−λπ

τ
−χ π2

βπτ

π ≡ −τ2πηsηs

τπ = η/βπ, βπ = 4P/5

λ = 38/21: Second-order
coefficient.

λIS = 2: Second-order IS
coefficient.

χ = 36/175: Heuristic
higher-order correction.

First-order and second-order CE shows convergence.
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Third-order evolution equation for shear stress tensor

To obtain the third-order evolution equation of πµν ,

πµν = ∆µν
αβ

∫
dp pαpβ δf ⇒ π̇〈µν〉 = ∆µν

αβ

∫
dp pαpβ δḟ

From BE in RTA, we obtain δḟ = −ḟ0 − (pγ∇γf )/u ·p − δf /τR
Substituting δf = δf1 + δf2 [A. Jaiswal, Phys. Rev. C 88, 021903(R) (2013)]

π̇〈µν〉 =− πµν

τπ
+ 2βπσ

µν + 2π〈µγ ω
ν〉γ − 10

7
π〈µγ σ

ν〉γ − 4

3
πµνθ

+
1

βπ

[
25

7
πρ〈µων〉γπργ−

1

3
π〈µγ π

ν〉γθ− 38

245
πµνπργσργ−

22

49
πρ〈µπν〉γσργ

]
+ τπ

[
26

21
π〈µγ ω

ν〉γθ − 2

7
ωρ〈µων〉γπργ−

2

7
πρ〈µων〉γωργ−

10

63
πµνθ2

]
− 24

35
∇〈µ

(
πν〉γ u̇γτπ

)
+

4

35
∇〈µ

(
τπ∇γπ

ν〉γ
)
− 2

7
∇γ

(
τπ∇〈µπν〉γ

)
+

12

7
∇γ

(
τπu̇
〈µπν〉γ

)
− 1

7
∇γ

(
τπ∇γπ〈µν〉

)
+

6

7
∇γ

(
τπu̇

γπ〈µν〉
)
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Pressure anisotropy in Bjorken evolution: Third-order
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τπ = η/βπ: Shear
relaxation time.

βπ = 4P/5

λ = 38/21: Second-order
coefficient.

χ = 72/245: Third-order
correction.

PL/PT ≡ (P−π)/(P+π/2)

Third-order shows Improved agreement with exact solution of BE.
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Comparison of pressure anisotropy with BAMPS
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[A. El, Z. Xu and C. Greiner, Phys.

Rev. C 81, 041901(R) (2010)]

τ ′π = η/β′π: Shear
relaxation time.

β′π = 2P/3

λ′ = 4/3: Second-order
coefficient.

χ′ = 3/4: Third-order
coefficient.

Third-order from kinetic theory shows better agreement with BAMPS.
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Conclusions

Derived the expression for the viscous corrections to the distribution
function up to second-order (alternative to Grad’s approximation).

These corrections does not violate the experimentally observed
1/
√
mT scaling of the HBT radii and shows convergence.

Derived evolution equation for shear stress tensor, directly from its
definition, up to third-order (without using second moment of BE).

Second-order hydrodynamic equations derived here results in better
agreement with transport calculation (BAMPS) compared to IS.

Third-order hydrodynamic evolution shows improved agreement with
exact solution of BE compared to second-order.

Third-order hydrodynamic equation derived here also shows better
agreement with BAMPS compared to third-order from entropy.
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THANK YOU
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Backup slide: Bjorken Flow [J. D. Bjorken, Phys. Rev. D 27, 140 (1983)]

In Milne coordinates: proper time τ =
√
t2 − z2, spacetime rapidity

ηs = tanh−1(z/t), t = τ cosh ηs , z = τ sinh ηs and the metric is given
by gµν =diag(1,−1,−1,−τ2).

Boost invariance (v z = z/t) for hydro translates into

ut =
t

τ
, uz =

z

τ
, uηs = −ut sinh ηs

τ
+uz

cosh ηs
τ

= 0 ⇒ uµ = (1, 0, 0, 0)

In centre of the fireball, stress energy tensor in local comoving frame
has the form: Tµν = diag(ε, PT , PT , PL).

PT = P + π/2 ; PL = P − π ;
PL

PT
=

P − π
P + π/2

.

The evolution equations for ε and π ≡ −τ2πηsηs becomes
dε

dτ
= −1

τ
(ε+ P − π) ,

dπ

dτ
= − π

τπ
+ βπ

4

3τ
− λπ

τ
− χ π2

βπτ
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