Three Loop HTL Thermodynamics at finite T and μ

NAJMUL HAQUE

Theory Divison Saha Institute of Nuclear Physics Kolkata, India

Why EOS of QCD matter is Important?

- If either the temperature or the density of strongly interacting matter is increased enough, it undergoes a phase transition from the hadronic phase into deconfined quark-gluon plasma (QGP) phase.
- This high temperature/high baryonic situation can be achieve in Heavy-ion collisions experiment RHIC ,LHC and FAIR.
- Determination of Equation of State of such deconfined matter at finite temperature and finite chemical potential is extremely important.

Various Models

- There are various existing perturbative and non-perturabative (Lattice) thermodynamics calculations in Literature.
- The currently most reliable method for determining the EOS is lattice QCD.
- But lattice calculations can be performed at arbitrary temperature; however, they are restricted to relatively small chemical potentials.
- Perturbative calculation have problems like convergence and large dependence on the choice on renormalization scale.
- Hard Thermal Loop perturbation theory is resummed perturbation theory where problems of pure perturbation theory can be cured partially.

HTL perturbation Theory

HTL perturbation theory is a reorganization of the perturbation series for thermal QCD. The Lagrangian density is written as

$$\mathcal{L} = (\mathcal{L}_{\text{QCD}} + \mathcal{L}_{\text{HTL}}) \Big|_{g \to \sqrt{\delta}g} + \Delta \mathcal{L}_{\text{HTL}}.$$

The HTL improvement term is

$$\begin{aligned} \mathcal{L}_{\text{HTL}} &= -\frac{1}{2} (1-\delta) m_D^2 \text{Tr} \left(G_{\mu\alpha} \left\langle \frac{y^{\alpha} y^{\beta}}{(y \cdot D)^2} \right\rangle_y G^{\mu}{}_{\beta} \right) \\ &+ (1-\delta) i m_q^2 \bar{\psi} \gamma^{\mu} \left\langle \frac{y^{\mu}}{y \cdot D} \right\rangle_y \psi \,, \end{aligned}$$

HTLpt is defined by treating δ as a formal expansion parameter.

Three Loop HTLpt

Three loop HTL Feynman Diagram

Three Loop HTLpt NNLO Pressure

$$\begin{split} \mathcal{P}_{\rm NNLO} &= \frac{d_A \pi^2 T^4}{45} \left[\left[1 + \frac{7}{4} \frac{d_F}{d_A} \left(1 + \frac{120}{7} \hat{\mu}^2 + \frac{240}{7} \hat{\mu}^4 \right) - \frac{15}{4} \hat{m}_D^3 - \frac{s_F \alpha_s}{\pi} \left[\frac{5}{8} \left(5 + 72\hat{\mu}^2 + 144\hat{\mu}^4 \right) \right. \\ & + 90\hat{m}_q^2 \hat{m}_D - \frac{15}{2} \left(1 + 12\hat{\mu}^2 \right) \hat{m}_D - \frac{15}{2} \left(2\ln \frac{\hat{\lambda}}{2} - 1 - \aleph(z) \right) \hat{m}_D^3 \right] + s_{2F} \left(\frac{\alpha_s}{\pi} \right)^2 \left[-\frac{45}{2} \hat{m}_D \left(1 + 12\hat{\mu}^2 \right) \right. \\ & + \frac{15}{64} \left\{ 35 - 32 \left(1 - 12\hat{\mu}^2 \right) \frac{\zeta'(-1)}{\zeta(-1)} + 472\hat{\mu}^2 + 1328\hat{\mu}^4 + 64 \left(6(1 + 8\hat{\mu}^2)\aleph(1, z) + 3i\hat{\mu}(1 + 4\hat{\mu}^2)\aleph(0, z) \right. \\ & - 36i\hat{\mu}\aleph(2, z) \right) \right\} \right] + \left(\frac{s_F \alpha_s}{\pi} \right)^2 \left[\frac{5}{4\hat{m}_D} \left(1 + 12\hat{\mu}^2 \right)^2 + 30 \left(1 + 12\hat{\mu}^2 \right) \frac{\hat{m}_q^2}{\hat{m}_D} + \frac{25}{12} \left\{ \frac{1}{20} \left(1 + 168\hat{\mu}^2 + 2064\hat{\mu}^4 \right) \right. \\ & + \left(1 + \frac{72}{5}\hat{\mu}^2 + \frac{144}{5}\hat{\mu}^4 \right) \ln \frac{\hat{\lambda}}{2} + \frac{3\gamma_E}{5} \left(1 + 12\hat{\mu}^2 \right)^2 - \frac{8}{5} \left(1 + 12\hat{\mu}^2 \right) \frac{\zeta'(-1)}{\zeta(-1)} - \frac{34}{25} \frac{\zeta'(-3)}{\zeta(-3)} - \frac{72}{5} \left[3\aleph(3, 2z) \right] \right] \\ & + 8\aleph(3, z) - 12\hat{\mu}^2 \aleph(1, 2z) - 2(1 + 8\hat{\mu}^2)\aleph(1, z) + 12i\hat{\mu}(\aleph(2, z) + \aleph(2, 2z)) - i\hat{\mu}(1 + 12\hat{\mu}^2) \Re(0, z) \right] \right\} \\ & - \frac{15}{2} \left(1 + 12\hat{\mu}^2 \right) \left(2\ln \frac{\hat{\lambda}}{2} - 1 - \aleph(z) \right)\hat{m}_D \right] + \frac{c_A \alpha_s}{3\pi} \frac{s_F \alpha_s}{\pi} \left[\frac{15}{2\hat{m}_D} \left(1 + 12\hat{\mu}^2 \right) + 90 \frac{\hat{m}_q^2}{\hat{m}_D} \right] \\ & - \frac{235}{16} \left\{ \left(1 + \frac{792}{4\hat{\mu}} \hat{\mu}^2 + \frac{1584}{4\hat{\eta}} \hat{\mu}^4 \right) \ln \frac{\hat{\lambda}}{2} - \frac{24\gamma_E}{4\hat{\tau}} \left(1 + 12\hat{\mu}^2 \right) + \frac{319}{940} \left(1 + \frac{2040}{319} \hat{\mu}^2 + \frac{38640}{319} \hat{\mu}^4 \right) - \frac{268}{235} \frac{\zeta'(-3)}{\zeta(-3)} \\ & - \frac{144}{47} \left(1 + 12\hat{\mu}^2 \right) \ln \hat{m}_D - \frac{44}{47} \left(1 + \frac{156}{11\hat{\mu}} \hat{\mu}^2 \right) \frac{\zeta'(-1)}{\zeta(-1)} - \frac{72}{47} \left[4i\hat{\mu}\aleph(0, z) + \left(5 - 92\hat{\mu}^2 \right) \aleph(1, z) + 144i\hat{\mu}\Re(2, z) \right] \\ & + 52\aleph(3, z) \right] \right\} + \frac{315}{4} \left\{ \left(1 + \frac{132}{7} \hat{\mu}^2 \right) \ln \frac{\hat{\lambda}}{2} + \frac{11}{7} \left(1 + 12\hat{\mu}^2 \right) \gamma_E + \frac{9}{14} \left(1 + \frac{132}{3\hat{\mu}^2} \right) + \frac{2}{7} \Re(z) \right\} \hat{m}_D \right] \\ & + \frac{c_A \alpha_s}{3\pi} \left[- \frac{15}{4} + \frac{45}{2} \hat{m}_D - \frac{135}{2} \hat{m}_D^2 - \frac{495}{4} \left(\ln \frac{\hat{\lambda}}{2} + \frac{52}{22} + \gamma_E \right) \right] + \left(\frac{c_A \alpha_s}{3\pi} \right)^2 \left[\frac{45}{4\hat{m}_D} - \frac{165}{8} \left(\ln \frac{\hat{\lambda}}{2} \right) - \frac{72}{11} \ln \hat{m}_D - \frac{84}{33\pi} \left[-$$

Why BAND ?

Running coupling constant corresponding to one loop beta function

$$\alpha_s(\Lambda) = \frac{12\pi}{11C_A - 2N_f} \frac{1}{\ln\left(\frac{\Lambda^2}{\Lambda_{MS}^2}\right)}$$

- C_A = Color factor associated with gluon emmision from a gluon. For $SU(N_C)$ gauge theory, $C_A = N_c$.
- $N_f =$ Number of flavor,
- $\Lambda_{\overline{MS}} = \text{QCD}$ scale. For one loop beta function with $N_f = 3, \ \Lambda_{\overline{MS}} = 176 \text{ MeV}(\text{from Lattice}).$
- $\Lambda =$ Renormalization scale which is $\sim 2\pi T$ at finite temperature. There are different choices for Λ as $2\pi T$ or $1.47 \times 2\pi T$. We choosen here the center value as $2\pi \sqrt{T^2 + \mu^2/\pi^2}$ and we varied the center value by a factor of 2.

$\Delta P(T,\mu) = P(T,\mu) - P(T,0).$

Other Thermodynamic quantities

Entropy density
$$S(T,\mu) = \frac{\partial \mathcal{P}}{\partial T}$$
,
Number density $n_i(T,\mu_i) = \frac{\partial \mathcal{P}}{\partial \mu_i}$,
Energy density $\mathcal{E}(T,\mu) = T\frac{\partial \mathcal{P}}{\partial T} + \mu \frac{\partial \mathcal{P}}{\partial \mu} - \mathcal{P}$
Speed of sound $c_s(T,\mu)^2 = \frac{\partial \mathcal{P}}{\partial \mathcal{E}}$
Trace anomaly $I(T,\mu) = \mathcal{E} - 3\mathcal{P}$

Fluctuations of conserved charges

- Fluctuations and correlations of conserved charges are sensitive probes of deconfinement
- Quark Number fluctuation for three flavor system is defined as

$$\chi^{uds}_{ijk}(T) = \frac{\partial^{i+j+k}\mathcal{P}}{\partial \mu^i_u \partial \mu^j_d \partial \mu^k_s}$$

• We can also define Baryon Number fluctuations as

$$\chi_n^B(T) = \frac{\partial^n \mathcal{P}}{\partial \mu_B^n}$$

with $\mu_B = \mu_u + \mu_d + \mu_s$ for three-flavor system.

Fluctuations of conserved charges

In three loop HTLpt case, we have a diagram:

The flavor of two fermionic loop are not same always.

 \Rightarrow Off-diagonal susceptibilty is non-zero.

 \Rightarrow Quark number flutuations and baryon number fluctuations are not proportional to eache other.

Second order fluctuations

arXiv:1309:3968

 As we are interested in fluctuation of the system near zero chemical potential, second order off-diagonal susceptibility is zero.
 ⇒ Second order quark number and baryonic number fluctuations are

proportional.

Fourth order baryon number fluctuations

arXiv:1309.3968

Fourth order diagonal quark number fluctuations To appear

Speed of Sound

To appear

Trace Anomaly

Collaborators

J.O. Andersen NTNU

M.G. Mustafa SINP

A. Banerjee SINP

M. Strickland Kent State U.

N. Su Bielefeld U.

NAJMUL HAQUE (SINP)

Three Loop HTL Thermodynamics

January 16,2014 20 / 21

Thank You for your attention.