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   Plan of the talk 

Introduction  explaining the origin of transport coefficients in an 

interacting system. 

Evaluation of transport coefficients  by solving the 

relativistic transport equation.      

 Calculating the reaction cross-section for a medium with 

non-zero temperature and chemical potential. 

Results showing the medium effect on the temperature dependence 

of transport coefficients and comparing with the existing ones.   

Summary  and outlook.   



These viscous effects also modify the energy-momentum stress tensor. To 

first order in velocity gradient shear viscosity appears as the coefficient of 

the traceless part .  

3 

When a system is slightly away from equilibrium collisions within the  

system restore it back. These collisions involve momentum transfer  

between different elements of the system which set up different  

dissipative processes.  

Since due to shear viscosity the fluid elements of the adjacent layers have 

a velocity gradient , there appears a distortion in the fluid distribution  

which  modifies the distribution function of fluid elements by an amount δf. 

In case of bulk viscosity, since it results from compression or expansion of 

the fluid it also results in modification of distribution function.  

Comparing the above equations and obtaining      by solving  Boltzmann 

transport equation the value of shear and bulk viscosity has been estimated  

.  
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Introduction 



 For a system with no  

external forces and slightly 

away from equilibrium. 
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The relativistic Boltzmann transport equation for the phase 

space distribution function f(x,p) in a covariant frame 
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Solving transport equation by Chapman-Enskog approximation    
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Equilibrium distribution function   

A small deviation of 

distribution function from the 

equilibrium resulting from the 

correspondence between the 

non-equilibrium kinetic theory 

and viscous hydrodynamics.     
Integral equation satisfied by ϕ(x,p) 
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The deviation function ϕ satisfies  

the integro-differential equation. 

This method expands the distribution function in a series in term of 

an ordering parameter. 



Solving the unknown function ϕ    

 

 
The equilibrium distribution function for a Bosonic system , 

The thermodynamic quantities, 

T(x), μ(x), Uµ(x) upon which f0 

depends are again function of 4 

time-space co-ordinates. 

The space-time gradient may be decomposed w.r.t. the 

4-velocity Uμ(x) into a time-like and a space-like part. 
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 These derivatives should be expressed in terms of velocity and temperature gradients.  

 Needed to be eliminated using thermodynamic equilibrium laws. 
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Linear equation solved by the function ϕ    
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In order to be a solution of the previous equation ϕ must be a linear combination of 

thermodynamic forces, 

Term related to  

shear viscosity 
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Tensor coefficient 

Term related to  

bulk viscosity  

    

 

 

A

Scalar coefficient 

Term related to  

thermal conductivity 
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Vector coefficient 

In order to keep the function ϕ a scalar quantity, the coefficients should be of 

appropriate tensorial rank. 

  

       φ1
1

0

νμ

νμαα

μα

μσ

σμ

μ 


AfTkuppDuTTphupuQ B

Thermodynamic forces with different tensorial rank representing a scalar, a vector 

and a tensor respectively. 

  



Since the thermodynamic forces are independent, 

Integral equation solved by A 
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Integral equation solved by Bµ  
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       Linearized transport equations 



                Solving the transport coefficients     

 

 Since ϕ is a small perturbation, close to equilibrium, the relation of energy four-flow 

and viscous pressure tensor with the thermodynamic forces can be approximated by 

linear laws.  
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 Expression for bulk viscosity   

Expression for thermal 

conductivity   

Expression for shear viscosity   



Transport coefficients using Chapman-Enskog Approximation    
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Evaluating the ππ cross section   

The ππ  cross section calculated from effective 

field theory considering only the contact 

diagrams gives an amplitude,                      

 

 

which does not match with the experimental 

data beyond 600 MeV.  
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Ref: K. Itakura, O.Morimatsu, H.Otomo, 

Phys Rev. D 77,014014(2008) 

    The invariant amplitude for the ππ scattering is evaluated using a ρ meson                                                                                                                        

exchange between the pions using the following Lagrangian, 

                                                                                            π                             π           

 

      gρ =6.05 is fixed from ρ  ππ decay width.                     π                             π 

 

    In order to describe ππ scattering at low energies the σ exchange diagrams are   

also included  using the interaction      
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Iso-spin averaged amplitudes from effective field theory 

 

The medium modification of the ρ in hot and  

dense matter is expected to modify the cross-

section and as well as the value of η. 

. 

 In this calculation the ρ and σ propagator is 

modified by introducing the two pion decay width, 

                 

 

 

This modification in done only in s-channel ρ-

exchange diagrams ,which contributes in I=1 and in 

s-channel σ exchange diagrams, which contributes 

in I=0 state. 
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  Introducing medium effect in the ππ cross section 

 

The exact  ρ propagator with π-meson loop 

diagrams from Dyson equation  
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μνμν DDDD  The full ρ meson propagator in the medium   

Vacuum  

propagator 
One loop self  
energy function 

 
   qqiqqmq

qqqg
qqD 


,Im,Re

/
,

00

2

ρ

2

2

νμμν

0μν





The in medium ρ propagator in 

terms of real and imaginary part 

of self energy.   

ππ, πω, πa1,πh1 loop has been considered in the self energy function.  

Folding with πρ/3π decay width, ω,a1,h1 mesons results in suppression of 

ππ cross section. 

 



    Calculating the one loop ρ self energy function   

 

The N’s are resulting from the vertices appearing from the interaction Lagrangian. 

  Ref : S. Ghosh  et al, Eur. Phys. J C 70, 251 (2010) 
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vacuum  

propagator  

For h  

The ρ self energy at finite 

temperature determined in the 

real time formalism of thermal 

field theory.  
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vacuum propagator and distribution 

function n at a non-zero temperature.  
Temperature dependence enters 

in self energy through this term. 

  



The real part of the self energy function modifies the mass term in the propagator .  

  

The imaginary part of self energy is related to the decay width by the relation  

ImΠ(q0,q)=-q0Γ(q0,q). 
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 the first term refers to vacuum  

  Complete self energy function at finite temperature   

 

 second and third term are medium  dependent  
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The different scattering and decays processes mentioned above lead to  

              loss or gain of ρ meson within the medium. 

  

The first term can be interpreted as the probability of decay for the process 

ρ       πh with statistical weight factor {1+f (ωπ) }{1+f(ωh)} for emission minus 

the probability of inverse decay πh      ρ with weight factor  f (ωπ)f(ωh) for 

absorption. 

The second term can be interpreted as the probability of decay for the 

process ρh    π with statistical weight factor f (ωh){1+f(ωπ)}  minus the 

probability  for π      ρh with weight factor f (ωπ){1+f(ωh)} . 

          Imaginary part of ρ self energy function   

 



Introduction of temperature dependent chemical 

potential - effect of early chemical freeze-out    

 
Pions get out of chemical equilibrium early , at T ̴  170 MeV.  

Only elastic processes including the resonances dominate the dynamics of the system.  

At a  lower temperature  ̴ 100 MeV momentum transfer ceases to give kinetic freeze out.    

The chemical potential starts building up with decrease of temperature.    

Ref:  T. Hirano, and K. Tsuda 

          Phys Rev. C 66, 054905 

          (2002) 



                 Shear viscosity as a function of temperature in  

                         Chapman-Enskog approximation    

 

 

We can see a clear difference in the temperature dependence of shear viscosity with and 

without medium modification of  the ρ propagator and it is more prominent from the heavy 

meson loops which considered as the multipion contribution to ρ self-energy compare to ππ 

loop. 

The upper set of curves uses the upper limit of integration over ψ ̴ 2 , which corresponds       

EC.M. =2mπcoshψ ̴̴1 GeV for ππ scattering while the lower set denotes actual upper limit , i.e. 

∞, the difference between two sets of curve indicates the uncertainties of result due to 

insufficient information of cross section at higher energies.   , 

Ref:  Sukanya Mitra , Sabyasachi 

        Ghosh and  Sourav Sarkar,  

   Phys Rev. C 85, 064917 (2012) 



                 Shear viscosity as a function of temperature in  

                         Chapman-Enskog approximation    

 

 

μπ=0 

μπ(T) 

μπ(T) 

We can see a clear difference in the temperature  

dependence of shear viscosity with and without  

medium modification of  the ρ propagator and it is 

more prominent from the heavy meson loops which 

considered as the multipion contribution  

to ρ self-energy compare to ππ loop. 

Shear viscosity to entropy density ratio shows 

different trends for  zero and temperature  

dependent chemical potential. η/s increase  

with T  for μπ= μπ(T). in contrast with the  usual 

decreasing  trend  of  η/s for μπ=0. 

Ref:  Sukanya Mitra and  Sourav 

        Sarkar, Phys Rev. D 87, 

        094026 (2013) 



μπ=0 

μπ(T) 

μπ=85 MeV 

μπ(T) 

                 Bulk viscosity as a function of temperature in  

                         Chapman-Enskog approximation    

 

 
The three set of curves infer a large 

dependence on pion chemical potential, where 

in each set the effect of medium on ππ cross-

section is clearly visible for both pion loop as 

well as heavy meson loop in ρ propagator. 

The medium dependence is also observed for 

bulk viscosity to entropy density ratio as a 

function of temperature using a temperature 

dependent pion chemical potential . 

Ref:  Sukanya Mitra and  Sourav 

        Sarkar, Phys Rev. D 87, 

        094026 (2013) 



                 Thermal conductivity as a function of temperature in  

                         Chapman-Enskog approximation    

 

 

In case of thermal conductivity also the effect of medium is clearly seen through  

the self energy via π-π and π-meson loop. The zero and temperature dependent 

pion chemical potential gives small but distinctly different results. 

Submitted in  PRD 



Summary…… 

We have evaluated the invariant amplitude for ππ scattering from effective  field 
theory using  ρ meson exchange which agrees reasonably with the experimental 
data. To describe the scattering at low energies σ–exchange diagrams are also 
included. 
  
Medium effects on ρ and σ propagation is introduced through one loop self energy 
to obtain modified cross section at finite temperature . This shows a suppression in 
cross section at finite temperature. 
  

Shear and bulk viscosity co0efficiet along with thermal conductivity is evaluated in 
Chapman-Enskog approximation with those cross sections and with a temperature 
dependent chemical potential resulting from early chemical freezeout. The 
temperature dependence of η with and without medium effects shows noticeable 
difference. 
   

The shear and bulk viscosity t0 entropy density ratio is evaluated which is also 
modified due to the finite temperature medium effects.   
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            In medium self energy of σ meson   
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Entropy for an interacting pion gas    

 

Definition of  

entropy from the 

thermodynamic laws.    
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Entropy for  

free pion gas.    
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Shear Viscosity and its evidence in the matter created 

                       at heavy ion collision  

Shear viscosity is the measure of stress due to the  
velocity gradient between different layers of the fluid. y

u
η=

A

F x


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According to Kinetic Theory of Gases  
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According to Uncertainty principle;  
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viscosity 

 n   :    density of the particle 
 < p> :  average particle momentum  
λ   : mean free path 
 

The ideal hydrodynamics over predicts the 

charged hadron elliptic flow , viscous 

hydrodynamics with a small value of η/s matches 

the experimental data well, which is a strong 

evidence of non-zero shear viscosity in the 

medium created in heavy ion collision. 
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Transport coefficients using Chapman-Enskog Approximation    
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First approximation of bulk viscosity coefficient  c 
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The bracket quantity is 12 dimensional  

integral needed to be solved  by proper 
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