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[ Plan of the talk }

® Introduction explaining the origin of transport coefficients in an
interacting system.

@ Evaluation of transport coefficients by solving the
relativistic transport equation.

@ Calculating the reaction cross-section for a medium with
non-zero temperature and chemical potential.

® Results showing the medium effect on the temperature dependence
of transport coefficients and comparing with the existing ones.

® Summary and outlook.



Introduction

_L When a system is slightly away from equilibrium collisions within the
system restore it back. These collisions involve momentum transfer
between different elements of the system which set up different
dissipative processes.

_L_ Since due to shear viscosity the fluid elements of the adjacent layers have
a velocity gradient , there appears a distortion in the fluid distribution
which modifies the distribution function of fluid elements by an amount of.
In case of bulk viscosity, since it results from compression or expansion of
the fluid it also results in modification of distribution function.
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—L These viscous effects also modify the energy-momentum stress tensor. To
first order in velocity gradient shear viscosity appears as the coefficient of
the traceless part .

T = (e+ Py’ —Pg" +n(VAu" )+ &A™ (V-u)

—L Comparing the above equations and obtaining jf by solving Boltzmann
transport equation the value of shear and bulk viscosity has been estimated



[ The relativistic Boltzmann transport equation for the phase }
space distribution function f{x,p) in a covariant frame

For a system with no
C[f ] Collision term external forces and slightly

v away from equilibrium.
Cl = [r,drdr, 16 ) (ki (5 DL (6K 16 ) Gk 10, e £
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[Solving transport equation by Chapman-Enskog approximation }

This method expands the distribution function in a series in term of
an ordering parameter.

f(x, p)=F(x, p)+ F°(x, p)L+ f°(x, p)jo(x, p)

l A small deviation of

distribution function from the

equilibrium resulting from the
correspondence between the

L Integral equation satisfied by ¢(x,p) } non-equilibrium kinetic theory
and viscous hydrodynamics.

Equilibrium distribution function

m (0) _ The deviation function ¢ satisfies
P 0 m f (X’ p) — _ER[(P] the integro-differential equation.

Rp)= £, p)f drydr,dr, £ (k) £ )L+ 00k ol )+ olxk)-o(x, p)+ o(x k)W



[Solving the unknown function ¢ J

The equilibrium distribution function for a Bosonic system,

1 The thermodynamic quantities,
fo = 0 GO T(x), p(x), U¥(x) upon which f
xp{ P Y, K }—1 depends are again function of 4
KT (x) time-space co-ordinates.
The space-time gradient may be decomposed w.r.t. the In local rest frame,
4-velocity Ur(x) into a time-like and a space-like part. UM — (1 6)
no_ R u ’
0" =U E +Y D— a ) Pure time derivative
'y

e g Ry Y Vﬂ - ai ‘Pure spatial derivative
U/
U u u v SR
(p.u)ﬁ2 DT + D(ijl?r Duu} N p{_FFZVMT +vu($j— Pr v“uv} ()
1

f O+ £©)
These derivatives should be expressed in terms of velocity and temperature gradients.

Needed to be eliminated using thermodynamic equilibrium laws.



[Linear equation solved by the function ¢ J

c o v -1
Qa,u* +(p°u, - h)RMA“ (10,7 Dy, }- p, p,(0"0") =k, T (L+ Af, ) "R[g)
Thermodynamic forces with different tensonal rank representing a scalar, a vector
and a tensor respectively.

In order to be a solution of the previous equation ¢ must be a linear combination of
thermodynamic forces,

{ p=Ad,u" +B,4"{T6,T ~¢*Du, |~C, (0"u’) }

In order to keep the function ¢ a scalar quantity, the coefficients should be of
appropriate tensorial rank.

Scalar ciefﬁcient Vector coefficient Tensor coefhicient

[ 4 1 B, = BA } [ C=Cp“pVJ
1 L w P L

Term related to Term related to Term related to

bulk viscosity thermal conductivity shear viscosity



[ Linearized transport equations

Since the thermodynamic forces are independent,

Integral equation solved by A
A=~ ) )R

Integral equation solved by Bu

e -2 o)k 1O o)

Integral equation solved by C

[ 93[%]?% fO(p)+ FO(p)Yp, pvﬂ




[ Solving the transport coefficients J

Since ¢ is a small perturbation, close to equilibrium, the relation of energy four-flow

and viscous pressure tensor with the thermodynamic forces can be approximated by
linear laws.

14 =)A“{5 T —TDu, } AT" = 2p(0"u" )+ &40, u

! !

‘Thermal conductivity Shearviscosity ~ Bulk viscosity
Again since,
d3p a -1 -2 o]
4= PR _f,(L+ f,)B,A*{T %3,T —c2Du, fp*(p°u, -h)

d° v L
AT = (Zn)3ppof L+ 1, p'p)C, (0" )~ (2n)3pp° f,(1+ T, )QAD U
- v A

&=-[dr, £°(p)o+Af°(p)IQA

1 : . Expression for thermal
A= 'ﬁjdrp f O(D)(1+ f O(P))(P U h)Bu p.A conductivity

Expression for bulk viscosity

K n= _i J' de f L 1+ f )<p p Expression for shear viscosity
10




[Transport coefficients using Chapman-Enskog Approximation }

. . 2
& Bulkwviscosity y a,
{ ¢ =10 } a,, =27°1,(z)

3 0 0 1 1 0 2
R e [ B | (R - N —(ﬂ—v’j 21507 242
2|3 8! S S, S, 3 S, S;

@ Thermal conductivity [ i 1 1812 }

2

s [SH b, =82(1,(2)+1,(2))

B, = —32{1+ 527 831

@ Shear viscosity L B Y (2) }
T‘I =




[Integral form of the bracket expression }

4 o T
| (z)= -Slz(z)]z e(‘z““’”jd\pcoshe’ wsinhqﬂjd@sin ®%g—g(\|”®)
-2 0

0 o9 T ZZCOSh\pcoshx

:dxsinhz“(x)gd(p!desine(e ) ) (o _1) (0,0)

}
fO(p)f (")(k){l}f O+ Ok

= z(cosh y cosh y - sinhysinh ycos6) M, (6,0)=1—cos?

G = E +2zsinhysinhycos6

H = F + 2z sinh ysinhycosb’

M, (0,8)=]cos? 0-cos?o'[

z):gk“Kn(kz)



[Evaluating the nnt cross section 1
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_ Ref: K. Itakura, O.Morimatsu, H.Otomo,
8- T-TT 3 i Phys Rev. D 77,014014(2008)
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60 r s & / The nnt cross section calculated from effective\
: . field theory considering only the contact

diagrams gives an amplitude,

T

data beyond 600 MeV.

14 {21m;1 +9s® —24m?s + 3t —u)2}

R R which does not match with the experimental

J

ﬂ The mvariant amplitude for the mtw scattering is evaluated using a p meson \

exchange between the pions using the following Lagrangian

L=9.P, -(ﬁx@”ﬁ)

g, =6.05 is fixed from p-nm decay width.

% |n order to describe wtt scattering at low ener%les the o exchange diagrams are

also included using the interaction r

Ot

~g.m 170
29

>




Iso-spin averaged amplitudes from effective field theory

S—u s—t 3 1 1
Mlzozzgs 2 + 2 +g§m§ 2 . + 2+ 2
t—-m’ u-m] s—m;+im I t-m: u-—m:
=1 — g 2 + + gcmc 2 2
S— mp+|mF u-— m — t—-m, u-—-m;
u-—s t— 1
M_ =09 ~+ +9g2m?
t—-m> u- t—m;
/ The medlum modlﬁcatlon of the p in hot and
2 1 dense matter is expected to modify the cross-
‘M ‘ ~a Z(ZI +1} ‘ section and as well as the value of n.
R f o | this calculation the p and ¢ propagator is
----- medium (pi-pi) T=160 MeV o 2 c 5 - -
go- — mediom (mulipion) T=160MeV " ] modified by introducing the two pion decay width,
= AN ‘ g2
o 601 (s S—4m
% » p( )= 487:8( )3

o | Nis modification in done only in s-channel p-
» 1| exchange diagrams ,which contributes in I=1 and in
A U \\s-channel o exchange diagrams, which contributes

>
S
T

in 1=0 state.




[ Introducing medium effect in the nm cross section }

The exact p propagator with -meson loop

diagrams from Dyson equation
D =DYiporrp . .
b e up A The full p meson propagator in the medium
Vacuum One loop self

propagator energy function
, The in medium p propagator in
D. (9,,§)= ~9,+9,9./9 terms of real and imaginary part
AN 2 2 —\ - —
q° —m’ —ReTI(q,,G)+iImII(q,,G) of self energy.

¢, W, na, rth; loop has been considered in the self energy function.

#Folding with np/3n decay width, ®,a;,h; mesons results in suppression of
nn cross section.



[ Calculating the one loop

p self energy function

4 h

!

M, (a)=if (2734 Nw(q,k)irkk)Ah\q—K) [

one loop self-energy in vacuum with
internal lines for pion and a hadron h.

J

vacuum vacuum
propagator  propagator
form Forh

The N’s are resulting from the vertices appearing from the interaction Lagrangian.

Ref: S. Ghosh etal, Eur. Phys.] C 70, 251 (2010)

K
)4

N,.(a,k)D, (k)D,(q=k)

!

m,,(q)= if(g;

therm thermal
propagator  propagator
form forh

/

The p self energy at finite
temperature determined in the
real time formalism of thermal

\_field theory.

™

)

D(k) = A(K)+ 2inad(k? —m?)

l Thermal propagator in terms of

vacuum propagator and distribution
function n at a non-zero temperature.

Temperature dependence enters
in self energy through this term.




[ Complete self energy function at finite temperature }

d“k

(2x)

Ty N @b - kel -m?) 4, (on(erola -k i)
N @k n(@h(e)ok? ~m? p{la k) -m;)

¢ d'k
—
j (2z)’ : .
second and third term are medium dependent

m,,(a)=i]

N, (q, k)An(k)Ah (q — k) the first term refers to vacuum

)

0= +K of = fmi + g

energies of pions energies of hadrons

® The real part of the self energy function modifies the mass term in the propagator .

¢ The imagiary part of self energy is related to the decay width by the relation
ImI1(qo,G)=-0eI (g ).



[ Imaginary part of p self energy function

o o B T 0, b0, o)

Nk = M( )= oy (g ww>}

4a)a)h (10 — _ [f(a)h) (wn)]é(quw a)h)
el { i (o,)+ ()P + o, +wh>}

Im 17" (0, 6) = j

The different scattering and decays processes mentioned above lead to
loss or gain of p meson within the medium.

# The first term can be interpreted as the probability of decay for the process
p —> mth with statistical weight factor {1+f (0,) }{1+flw,)} for emission minus
the probability of inverse decay nmh __ p with weight factor f (o )fle,) for
absorption.

s The second term can be interpreted as the probability of decay for the
process ph—n with statistical weight factor f (w0, ){1+flo,)} minus the
probability for m— ph with weight factor f (w_){1+flw,)} .



Introduction of temperature dependent chemical
potential - effect of early chemical freeze-out

Pions get out of chemical equilibrium early, at T~ 170 MeV.

!

Only elastic processes including the resonances dominate the dynamics of the system.

!

Ata lowertemperature ~100 MeV momentum transfer ceases to give kinetic freeze out.

!

The chemical potential starts building up with decrease of temperature.

120

100

1 Ref: T. Hirano, and K. Tsuda
Phys Rev. C 66, 054905
(2002

L 1 L 1 L 1 L 1
80 100 120 140 160 180
T(MeV)



Chapman-Enskog approximation

[ Shear viscosity as a function of temperature in }

----- vacuum |
0.006 - ---- med (pi-pi loop ) y
- —— med (multi-pion)
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Ref: Sukanya Mitra, Sabyasachi
Ghosh and Sourav Sarkar,
Phys Rev. C 85, 064917 (2012)
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#We can see a clear difference in the temperature dependence of shear viscosity with and

without medium modification of the p propagator and it is more prominent from the heavy

meson loops which considered as the multipion contribution to p self-energy compare to nn
loop.

The upper set of curves uses the upper limit of integration over y~2 , which corresponds
Ecm =2m_coshy ~1 GeV for nw scattering while the lower set denotes actual upper limit , i.e.
oo, the difference between two sets of curve indicates the uncertainties of result due to
insufficient information of cross section at higher energies.



N(GeV’)

Shear viscosity as a function of temperature in
Chapman-Enskog approximation
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0.001 —————————
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Shear viscosity to entropy density ratio shows
different trends for zero and temperature
dependent chemical potential. /s increase
with T for p_=p (T). in contrast with the usual
decreasing trend of n/s for p_=0.

Ref: Sukanya Mitraand Sourav
Sarkar, Phys Rev. D 87,
094026 (2013)
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-1 We can see a clear difference in the temperature
~~~ med (multi-pion) < /1 dependence of shear viscosity with and without
medium modification of the p propagatorand it is
more prominent from the heavy meson loops which
considered as the multipion contribution

to p self-energy compare to nw loop.
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£X1000(GeV")

Bulk viscosity as a function of temperature in
Chapman-Enskog approximation

0.013

0.012

0.011

0.01 |

0.009 &=

0.008

0.007 |

0.006 |

0.005

The medium dependence is also observed for
bulk viscosity to entropy density ratio as a 035 1
function of temperature using a temperature
dependent pion chemical potential .
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Ref: Sukanya Mitraand Sourav

Sarkar, Phys Rev. D 87,
094026 (2013)

The three set of curves infer a large
dependence on pion chemical potential, where
in each set the effect of medium on &w cross-
section is clearly visible for both pion loop as
well as heavy meson loop in p propagator.
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Thermal conductivity as a function of temperature in
Chapman-Enskog approximation

0.0075 | ——— vacuum|p =0]
——— medium[p, =0]
— medium|[p, =p (T)] 7
0.0065 e
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0.0035 .

0.0025
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In case of thermal conductivity also the effect of medium is clearly seen through
the self energy via n-m and a-meson loop. The zero and temperature dependent
pion chemical potential gives small but distinctly different results.

Submittedin PRD



Summary......

¥ We have evaluated the invariant amplitude for zr scattering from effective field
theory using p meson exchange which agrees reasonably with the experimental

data. To describe the scattering at low energies c—exchange diagrams are also
included.

fMedium effects on p and o propagation is introduced through one loop self energy

to obtain modified cross section at finite temperature . This shows a suppression in
cross section at finite temperature.

¥ Shear and bulk viscosity cooefficiet along with thermal conductivity is evaluated in
Chapman-Enskog approximation with those cross sections and with a temperature
dependent chemical potential resulting from early chemical freezeout. The

temperature dependence of n with and without medium effects shows noticeable
difference.

¥ The shear and bulk viscosity to entropy density ratio is evaluated which is also
modified due to the finite temperature medium effects.






[ In medium self energy of o meson }

T
qa k> 0
4,—( I\
G gk’ o
T
D (q q’): 1 the in medium ¢ propagator
Sk 9° —m? —ReTlI(q,, q’)+i ImH(qo, q’) in terms of real and imaginary

part of self energy.

1+ f (0, )+ f o
q° -, — o), +ineld
f(o)(a)' )_ f(O)(wn

T

_|_

=) In medium self energy of

21) 4o, ) N f(o)(a)n)— £ co; o meson.
q° + o, -, +ire(q’)
14+ £ e, )+ 1))
q +o,+o, + im—:(qo)_
f (0)(0)) _ 1 The in medium distribution function, containing

glot)/T-1 the temperature dependence explicitly.



[Entropy for an interacting pion gas }

(e+P) 4 mmp Definition of

S =
T T entropy from the
thermodynamic laws.
I I I ! I I I /:
— =0 ’
g, o [ 1 L ] qEntropy for boosf- e o -
= m:(m_S;(z)—n._S;(z . —. p=80Mev 7
7]:2 nl ' 'n 3( ) Hr 2( ) free pion gas. 0.007_— K /// -
0.006 - // -
%o.oos-— /,’/ //’/ i
Y ,/’/ //’/ -
A 0.003 - ’,/::/// -
3m 1 0 0 L-~57T _
_— T 0.002 = -
AS __16 4_|; 2 Sl(z)[mnSZ (Z)_“nsl (Z)] e T T
T[ T 0.001).1 0.11 0.12 0.13 0.14 0.15 0.16 0.17

T(GeV)

Correction in entropy due to
interaction between pions

up to order O(T?®).



v, percent)

Shear Viscosity and its evidence in the matter created
at heavy ion collision

Shear viscosity is the measure of stress due to the ou, Shear

velocity gradient between different layers of the ﬂu1d A 77 Ay mscoszty
According to Kinetic Theory of Gases = _ > 1 p

n : density of the particle

< p>: average particle momentum \ = i

A : mean free path b, 2

According to Uncertainty principle; . ousheats

p/‘tzh :Qzl(ﬂ)h :in S~ 3.6n AL 571620208

s 3\s S 4r — s

_:l- cIST.'—";I?ILnDn-fIlmt-'corlrectedl{e.srj.I 1 - 01;;;;,3
ol L® STAR event-plane g '—_” 5=0.08 s

I /.ﬂ“"i'. oot .
15 7 L The ideal hydrodynamics over predicts the

- R i charged hadron elliptic flow , viscous
10 @I:}Ceo*“ e hydrodynamics with a small value of /s matches

[ | the experimental data well, which is a strong

| evidence of non-zero shear viscosity in the
L medium created in heavy ion collision.




{Transport coefficients using Chapman-Enskog Approximation }

Bulk viscosity

Key equation R[A]= ——f {1+ }Q

Inserting |_1n/ 2 (1;) on both s1des and integrating over dI',

[A(‘C), L 2(1)] = a—r: mmm) Bracketexpression for transport toefficient

o, =L Jar, 1) 19 (R0
F,G]:4—:‘2 [dr,dr,drdr, f9(p)f Ok L+ £ O(p )L+ £ OK)(F (G W

6(F)=F(p)+F(k)-F(p')-F(k')



Expanding the unknown coefficient A
in terms of Laugurre polynomial

d3
§=-jp—ff0(p)(1+ Afo(p))Qﬁ\ ['AET)’ Lln/z(T)]:Ot_nn
Za L1/2 T Expanding In term of Laugurre

Polynomial of order 1/2

2
E — o } mm) [irst approximation of bulk viscosity coefficient
A,

oty =~ [dr, £ (p)r 1 (p)RL ()

The bracket quantity is 12 dimensional
1/2 1/2
Ayy = [I—z (T)’ L,“(t ] =) Integral needed to be solved by proper
choicec of geometry.



