Upsilon Production in Pb-Pb and p-Pb Collisions at Forward Rapidity with ALICE at the LHC

Palash Khan

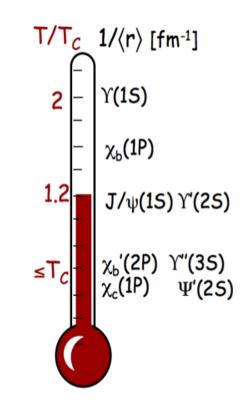
Saha Institute of Nuclear Physics (Kolkata, INDIA)

for the ALICE Collaboration

International Conference on Matter at Extreme Conditions: Then & Now Kolkata, India, 15-17 January 2014

Outline

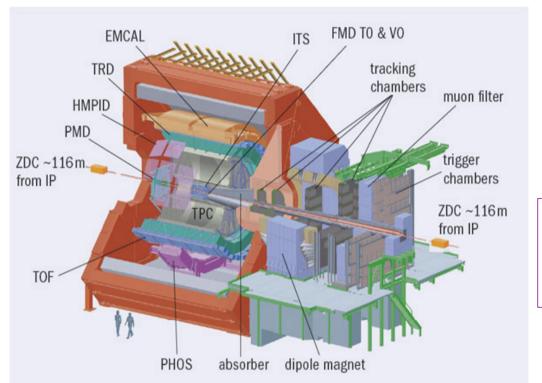
- Motivation
- ALICE Detector
- Results from 2011 Pb-Pb run at $\sqrt{s_{NN}}$ = 2.76 TeV :
 - $\rightarrow \Upsilon(1S) R_{\Delta\Delta}$ versus centrality
 - $\rightarrow \Upsilon(1S) R_{\Delta\Delta}$ versus rapidity
 - → Comparison to model predictions
- Results from 2013 p-Pb and Pb-p run at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$:
 - $\rightarrow \Upsilon(1S) R_{pPb}$ at forward and backward rapidity
 - \rightarrow Forward Backward Ratio (R_{FB}) for $\Upsilon(1S)$
 - \rightarrow Comparison to model predictions
- Summary and Outlook

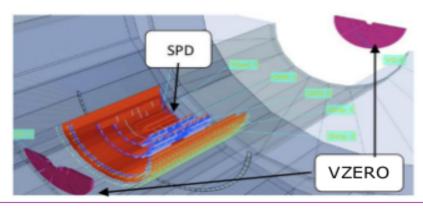

Motivation: Bottomonium in Heavy-Ion Collisions

- Quarkonium (J/ ψ and Υ) suppression is one of the most striking signatures for QGP formation in AA collisions
- Charm (1.2 1.4 GeV) and Bottom (4.6 4.9 GeV) quarks are massive
 - → Production takes place at very early stage of the collision
- Sequential suppression pattern acts as a QGP thermometer

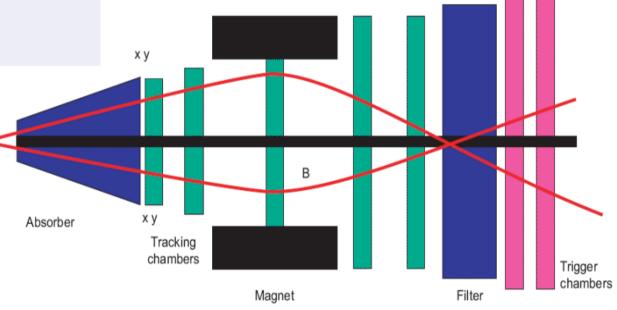
Resonance	J/ψ	Ψ'	Υ(1S)	Υ(2S)	Υ(3S)
Mass [GeV]	3.10	3.68	9.46	10.02	10.36
ΔE [GeV]	0.64	0.05	1.10	0.54	0.20
Radius [fm]	0.25	0.45	0.14	0.28	0.39

- Quarkonium (re)generation effects may take place if the initial heavy quark multiplicity is large
- Υ expected to be cleaner than J/ψ
 - → Absence of b-hadron feed-down
 - → Less recombination is expected than for charm




Fig. 5. The QGP thermometer. Agnes Mocsy, Eur.Phys.J.C61, 2009

ALICE Detector

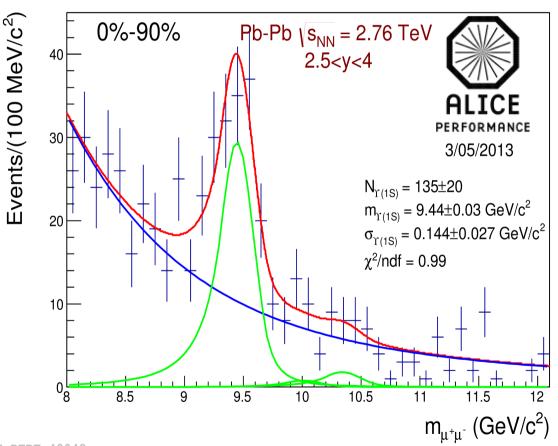


- → SPD used for vertex determination
- → Centrality in Pb-Pb estimated by fitting VZERO amplitude with Glauber model

- \rightarrow Acceptance down to zero p_{τ}
- $\rightarrow \Upsilon(1S) \rightarrow \mu^{+}\mu^{-} (2.48 \%)$

Rapidity Coverage of CMS: |y| < 2.4

Nuclear Modification Factor

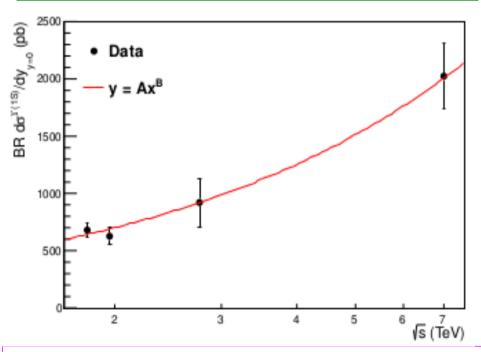


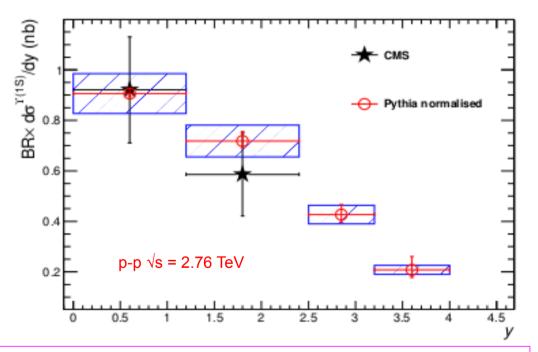
The suppression of quarkonia can be quantified by measuring the Nuclear Modification Factor $R_{AA(pPb)}$, which is the ratio of the production in AA(pPb) collisions to the production in pp scaled by the number of binary collisions.

$$R_{\rm AA(pPb)} = \frac{N_{\rm AA(pPb)}^{\Upsilon(1S)}}{\langle N_{\rm coll} \rangle_{\rm AA(pPb)} \times N_{\rm pp}^{\Upsilon(1S)}}$$

 $N_{_{Y(1S)}} \rightarrow measured number of \Upsilon(1S) \rightarrow \mu^{+}\mu^{-}$

 $N_{coll} \rightarrow number of binary collisions$


ALI-PERF-48048



Estimation of pp Reference Cross-Section

- The pp reference d σ /dy for Υ (1S) in the forward rapidity regions of interest for $\sqrt{s_{NN}} = 2.76(5.02)$ TeV is evaluated in two steps:
- 1. Interpolation of d σ /dy at y=0 using available mid-rapidity data (Tevatron + LHC) to get Υ (1S) cross-section at 2.76(5.02) TeV
- 2. Extrapolation of $d\sigma/dy$ from mid to forward rapidity using the rapidity shape given by Pythia 6.4

References for Experimental Data Points:

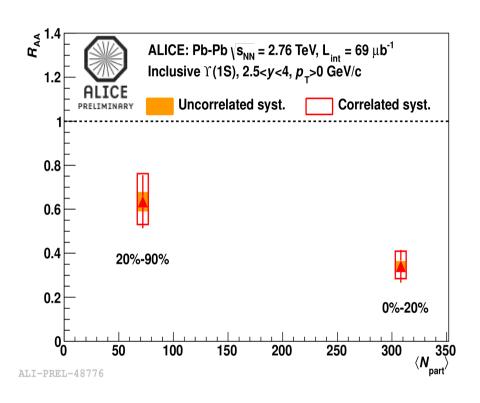
CDF(1.8 TeV) \rightarrow D. Acosta et al. [CDF Collaboration], Phys. Rev. Lett. 88 (2002) 161802.

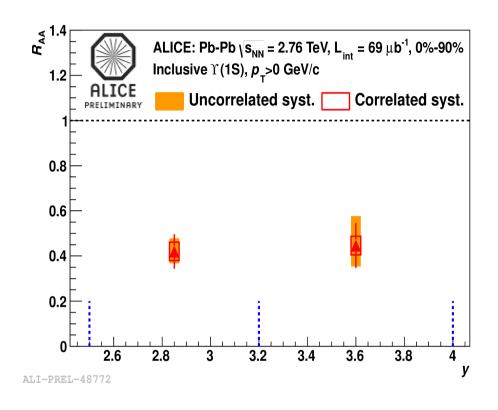
D0 (1.96 TeV) \rightarrow V. M. Abazov et al. [D0 Collaboration], Phys. Rev. Lett. 94 (2005) 232001 [Erratum-ibid. 100 (2008) 049902] [hep-ex/0502030].

CMS(2.76 TeV) → S. Chatrchyan et al. [CMS Collaboration], JHEP 1205, 063 (2012) [arXiv:1201.5069 [nucl-ex]].

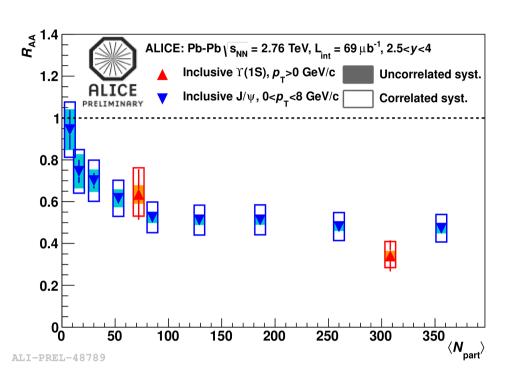
CMS(7 TeV) → V. Khachatryan et al. [CMS Collaboration], Phys. Rev. D 83, 112004 (2011) [arXiv:1012.5545 [hep-ex]].

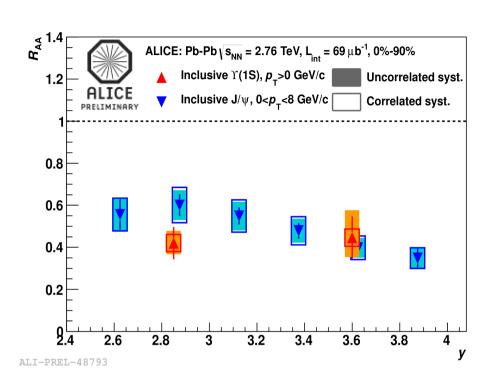
LHCb(7 TeV) → R. Aaij et al. [LHCb Collaboration], Eur. Phys. J. C 72, 2025 (2012) [arXiv:1202.6579 [hep-ex]].


Pb-Pb Results at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

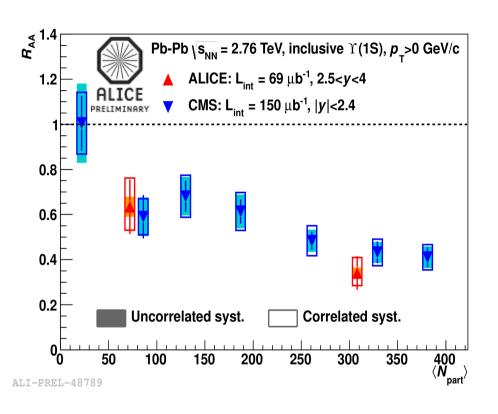

(Integrated Luminosity 69 µb⁻¹)

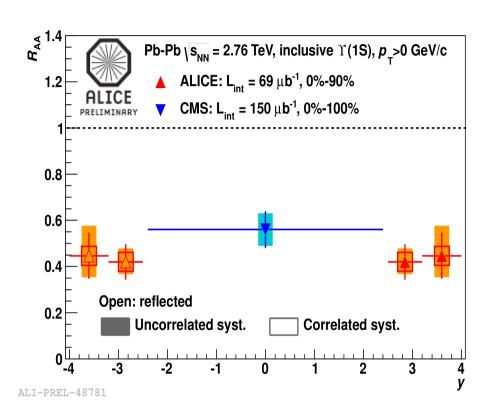
Nuclear Modification Factor of Inclusive $\Upsilon(1S)$ in Pb-Pb




- We observe suppression of inclusive $\Upsilon(1S)$
- Suppression stronger in central collisions
- No rapidity dependence within uncertainties

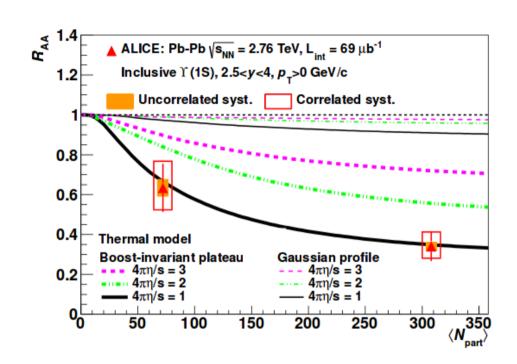
Comparison of J/ ψ and $\Upsilon(1S)$

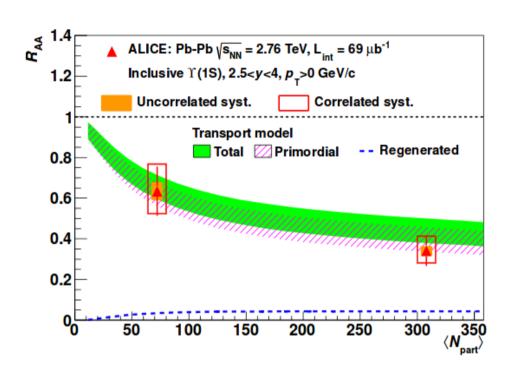

- \rightarrow Suppression of Υ and J/ ψ is comparable within the present uncertainties
- $\rightarrow \Upsilon$ is expected to be less sensitive to regeneration than J/ψ
- \rightarrow Feed down from higher excited states $\Upsilon(2S)$, $\Upsilon(3S)$, χ_b , χ_b ' ~ 50 %


 \rightarrow Weak rapidity dependence of $R_{_{A\!A}}$ for both J/ ψ and $\Upsilon(1S)$

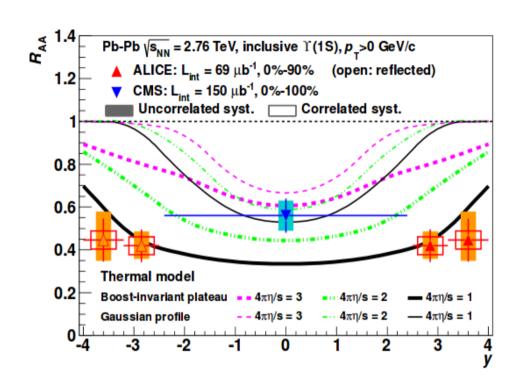
Comparison of ALICE forward-rapidity results with CMS mid-rapidity

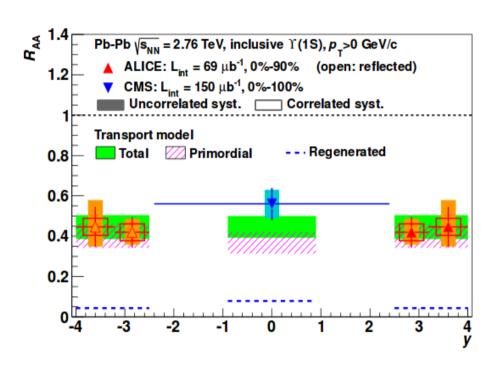
→ The suppression at forward rapidity in ALICE is similar to that at mid-rapidity measured by CMS for both central and semi-peripheral collisions


ightarrow No strong rapidity dependence of R $_{\rm AA}$ within the large range probed by ALICE and CMS


Reference for CMS Data points: PRL 109, 222301, (2012)

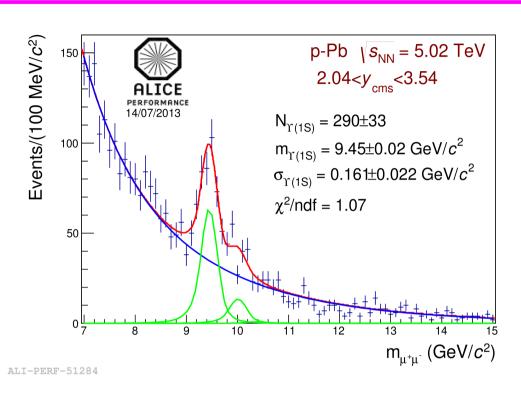
Comparison With Model Predictions

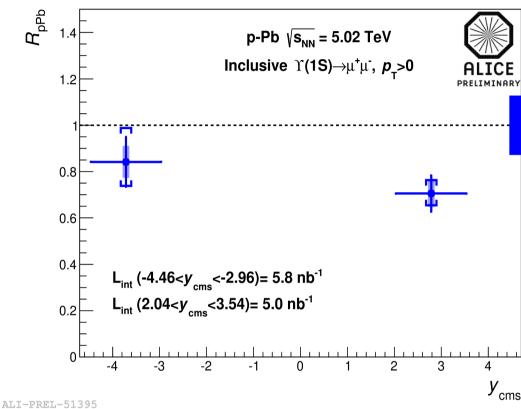

- ightarrow Strickland anisotropic hydro model includes feed-down of $\Upsilon(1S)$ by higher mass states, but does not include recombination effects and cold nuclear matter effects
- → Data is described with the hypothesis of a boost invariant plateau temperature profile with minimum shear viscosity at forward-rapidity

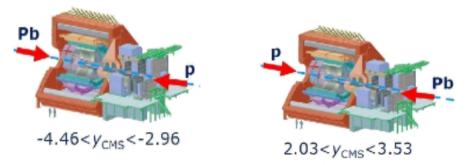

- \rightarrow Emerick et al. rate equation model includes small bb regeneration, feed-down from higher mass (~ 50 %) and CNM effects by an overall absorption cross-section of 0-2 mb
- → The model is in fair agreement with data within uncertainties

Comparison With Model Predictions

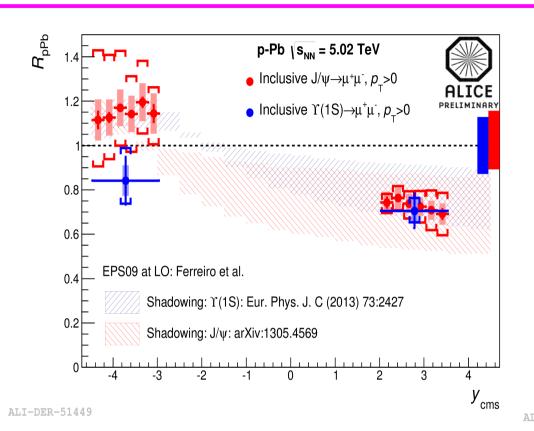
- → Both temperature profile can describe the mid-rapidity data, however Gaussian temperature profile is disfavored at forward rapidity
- ightarrow Although at forward-rapidity data is described with lowest $4\pi\eta/s$, the predicted R_{AA} should be considered as an upper limit, as CNM is not taken into account
- \rightarrow The Transport can describe the data both at midand forward-rapidity region

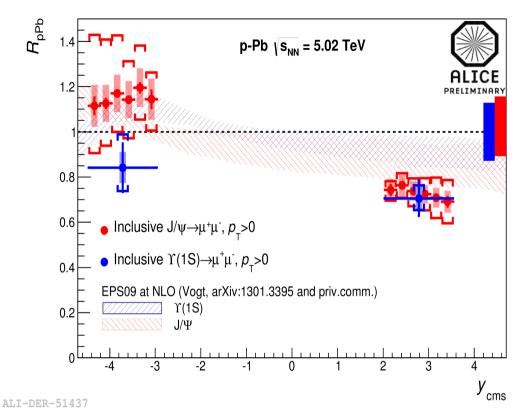

p-Pb and Pb-p Results at √s_{NN} = 5.02 TeV


[Integrated Luminosity 5.0 nb⁻¹ (p-Pb) and 5.8 nb⁻¹ (Pb-p)]

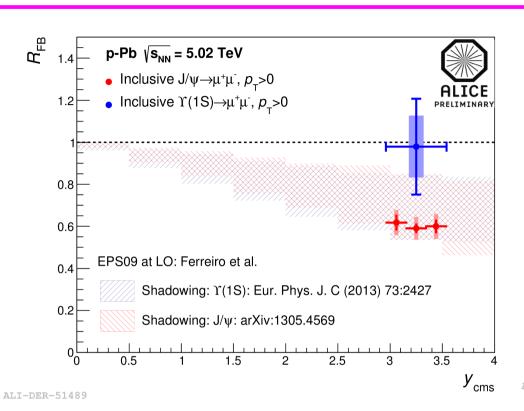


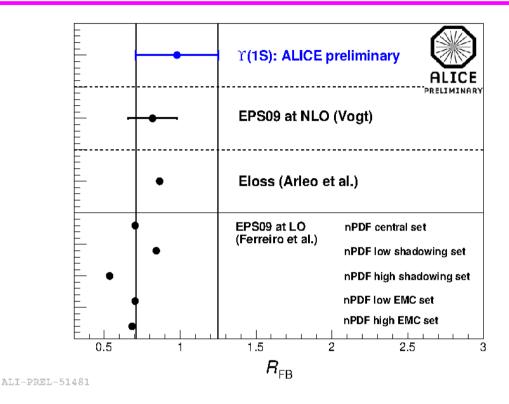
Nuclear Modification Factor of Inclusive $\Upsilon(1S)$ in p-Pb




 \rightarrow A suppression is observed for inclusive $\Upsilon(1S)$, stronger at forward rapidity

Comparison With Model Predictions


- → EPS09 calculation at LO from Ferreiro et al. model describes the data within uncertainties.
- \rightarrow The agreement is better for J/ ψ


ightarrow EPS09 calculation at NLO from Vogt model describes quite well the J/ ψ data and reproduces, with slightly larger values, the observed trend for $\Upsilon(1S)$

Comparison With Models R

$$R_{FB}^{Y(1S)} = \frac{R_{pA}^{Y(1S)}}{R_{Ap}^{Y(1S)}} = \left[\frac{N_{pA}^{Y(1S)}}{N_{Ap}^{Y(1S)}}\right] X \left[\frac{\langle AccxEff \rangle_{Ap}^{Y(1S)}}{\langle AccxEff \rangle_{pA}^{Y(1S)}}\right] X \left[\frac{N_{Ap}^{MB}}{N_{pA}^{MB}}\right]$$

- \rightarrow The J/ ψ $R_{_{FB}}$ is significantly lower than $\Upsilon(1S)$
- \to Within the uncertainties Ferreiro Model explains quite well the $~R_{_{FR}}$ both for J/ ψ and $\Upsilon(1S)$
- ightarrow All the models reproduce the forward to backward ratio within uncertainties
- \rightarrow The $\,\Upsilon(1S)$ result is at the upper edge of shadowing calculations, while for J/ $\!\psi$ the agreement is at the lower edge

Summary and Outlook

Results on $\Upsilon(1S)$ from Pb-Pb at $\sqrt{s_{NN}} = 2.76$ TeV:

- \rightarrow The nuclear modification factor for inclusive $\Upsilon(1S)$ has been measured at forward rapidity 2.5 < y < 4.0 down to zero p_{τ}
- → Suppression stronger in central collisions
- → No rapidity dependence within uncertainties
- \rightarrow Suppression pattern is comparable with forward-rapidity J/ ψ result from ALICE within uncertainties
- \rightarrow No strong rapidity dependence of R_{AA} within the large range probed by ALICE and CMS

Results on $\Upsilon(1S)$ from p-Pb at $\sqrt{s_{NN}} = 5.02$ TeV :

- → We observe small suppression of Υ(1S) in p-Pb data, which tends to increase from backward to forward rapidity
- \rightarrow J/ ψ suppression is comparable with $\Upsilon(1S)$ within uncertainties
- \rightarrow J/ ψ R_{FR} is significantly lower than $\Upsilon(1S)$

THANK YOU

BACKUP

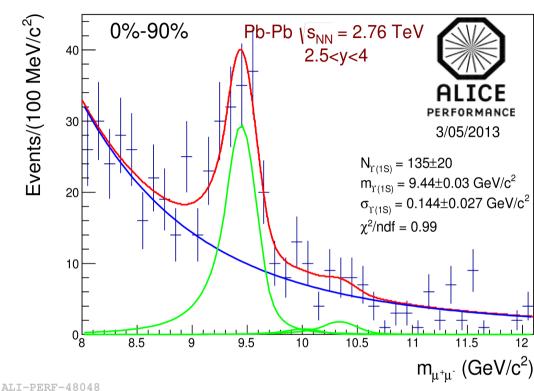
Signal Extraction - PbPb

Event Cuts:

Physics Selection Unlike Sign Trigger Centrality (0-90) %

Muon Cuts:

Trigger Matched Track (Lpt,Lpt) $-4.0 < \eta < -2.5$ $17.6 \text{ cm} < R_{abs} < 89.5 \text{ cm}$ pDCA Selection pT >= 2 GeV


Dimuon Cuts:

-4.0 < y < -2.5

$$M_{Y(2S)} = M_{Y(2S)}^{PDG} + (M_{Y(1S)}^{FIT} - M_{Y(1S)}^{PDG}) \frac{M_{Y(2S)}^{PDG}}{M_{Y(1S)}^{PDG}}$$

$$M_{Y(3S)} = M_{Y(3S)}^{PDG} + (M_{Y(1S)}^{FIT} - M_{Y(1S)}^{PDG}) \frac{M_{Y(3S)}^{PDG}}{M_{Y(1S)}^{PDG}}$$

$$\sigma_{Y(2S)} = \sigma_{Y(1S)} \frac{M_{Y(2S)}^{PDG}}{M_{Y(1S)}^{PDG}} \qquad \sigma_{Y(3S)} = \sigma_{Y(1S)} \frac{M_{Y(3S)}^{PDG}}{M_{Y(1S)}^{PDG}}$$

- → Signal fitted with Double Crystal Ball
- → Tail parameters fixed from embedding
- \rightarrow Mass, Sigma and Amplitude free for $\Upsilon(1S)$
- \rightarrow Amplitude of $\Upsilon(2S)$ and $\Upsilon(3S)$ kept free

Systematic From Signal Extraction

Following sources of systematics have been considered:

- Background Fit Function
 (Double Exponential and Double Power Law)
- 2. Mass Scaling of Y(2S) and Y(3S) \rightarrow varied \pm 0.5 %
- 3. Sigma Scaling of Y(2S) and Y(3S) \rightarrow varied ± 25 %
- 4. Scaling of CB tail parameter alpha of Y(2S) and Y(3S) → varied ± 25 %
- 5. Scaling of CB tail parameter n of Y(2S) and Y(3S) → varied ± 25 %
 - → Central value is the arithmetic average between results of reliable fits
 - → Statistical error is the average value of statistical uncertainties
 - → Systematic error is the RMS value between results of reliable fits for a given source of systematic

$$N_{\text{Y (1S)}} = N_{\text{Y (1S)}}^{cent} \pm N_{\text{Y (1S)}}^{stat} \pm N_{\text{Y (1S)}}^{syst}$$

$$N_{Y(1S)}^{cent} = \frac{\sum N^i}{n}$$

$$N_{Y (1S)}^{stat} = \frac{\sum Error N^{i}}{n}$$

$$N_{Y(1S)}^{syst} = \sqrt{\frac{\sum (N_{Y(1S)}^{i} - N_{Y(1S)}^{cent})^{2}}{n}}$$

RMS of two background functions and tail parameters (common source of systematics) are merged by this formula:

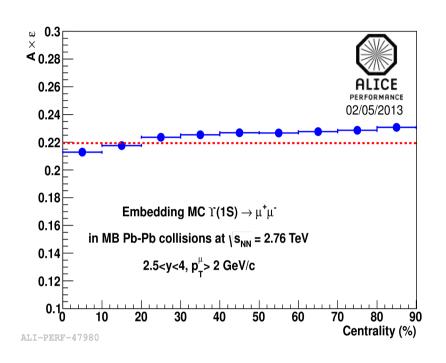
$$RMS = \sqrt{\frac{1}{N1+N2} \left\{ N1*RMS1^{2} + N2*RMS2^{2} \right\}}$$

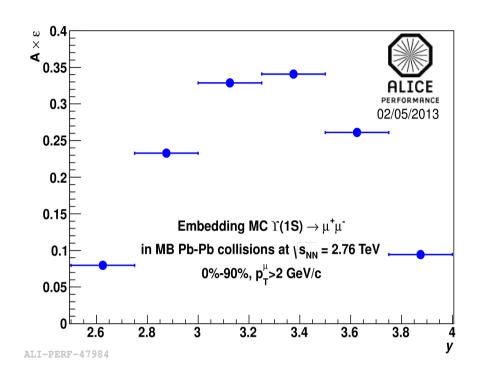
Systematic From Signal Extraction - LHC13de

Sources of Systematics	Central Value ± Stat Error ± Syst Error	Central Value ± Stat Error ± Syst Error
Background Fit Function : Double Exponential Double Power Law	288 ± 28 (9.72 %) ± 12 (4.17 %) 304 ± 24 (7.89 %) ± 10 (3.29 %)	296 ± 26 (8.78 %) ± 11 (3.72 %)
Mass Scaling Factor :	294 ± 31 (10.54 %) ± 4 (1.36 %)	294 ± 31 (10.54 %) ± 4 (1.36 %)
Sigma Scaling Factor :	297 ± 32 (10.77 %) ± 9 (3.03 %)	297 ± 32 (10.77 %) ± 9 (3.03 %)
Crystal Ball Tail Parameters : Crystal Ball α Crystal Ball n	301 ± 30 (9.97 %) ± 9 (2.99 %) 295 ± 31 (10.51 %) ± 5 (1.69 %)	298 ± 31 (10.40 %) ± 7 (2.35 %)
TOTAL		296 ± 30 (10.14 %) ± 16 (5.41 %)

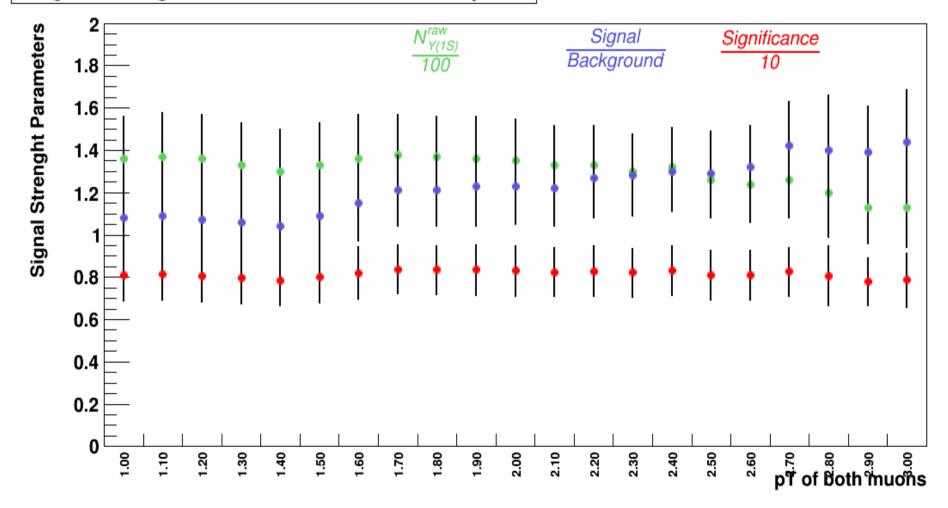
Central Value : Arithmetic Average

Stat Error: Arithmetic Average


Syst Error: Quadratic Sum

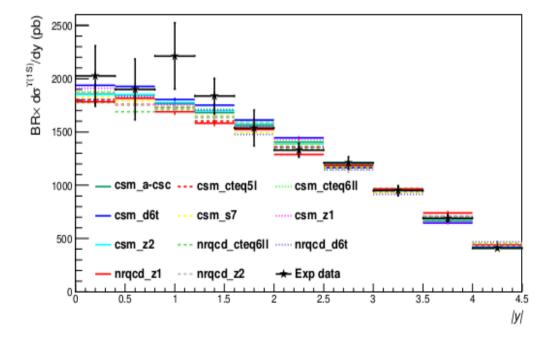

- → Statistical Error ~ 10 %
- → Systematic Error ~ 5 %
- → Dominant Source of Systematic is the BKG Fitting Function (~ 4%)

Acceptance Efficiency


- → Particle multiplicity high in Pb-Pb collisions, which affects tracl reconstruction efficiency
- → Embedding technique provides the most realistic background condition
- $\rightarrow \Upsilon(1S)$ generated using fast generator and forced to decay in dimuons
- → Particle transport and detector response provided by GEANT3
- → Run by run simulation done to incorporate time dependence of detector set up

Signal Strength Parameters

Signal Strength Parameters as Function of pT


R_{pA} and R_{FB}

Nuclear Modification Factor R_{DA}:

$$R_{pA} = \frac{N_{pA}^{\mathrm{Y}(1S)}}{<\!\!AccxEff\!\!>_{pA}^{\mathrm{Y}(1S)} x <\!\!T_{pA}\!\!> x N_{pA}^{MB} x \Delta y x BR^{\mathrm{Y}(1S)} x \sigma_{pp}^{\mathrm{Y}(1S)}}$$

- $T_{\text{pPb}} = 0.0983 \pm 0.0035 \text{ mb}^{-1} (arXiv: 1210.4520)$
- ♦ BR*d σ /dy → 945 +62-76 (norm) + 27-56 (extrap) pb for 2.03 < y < 3.53 in p-p → 510 +34-41 (norm) +35-95 (extrap) pb for 2.96 < y < 4.46 in p-p

 $d\sigma/dy$ for $\Upsilon(1S)$ obtained with Pythia6.4 productions (several tunings), validated with 7 TeV pp data from CMS and LHCb

Event Cuts and Muon cuts

Event Cuts:

Physics Selection

Unlike Sign Trigger

Muon Cuts:

Trigger Matched Track (Lpt,Lpt)

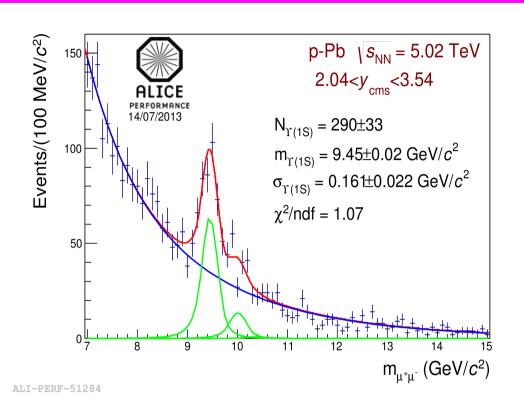
$$-4.0 < \eta < -2.5$$

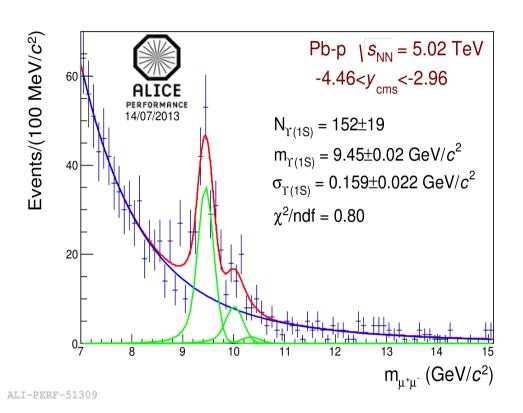
 $17.6 \text{ cm} < R_{abs} < 89.5 \text{ cm}$

pDCA Cut

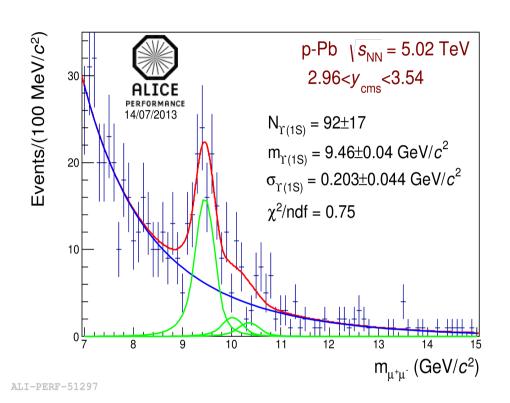
Dimuon Cuts:

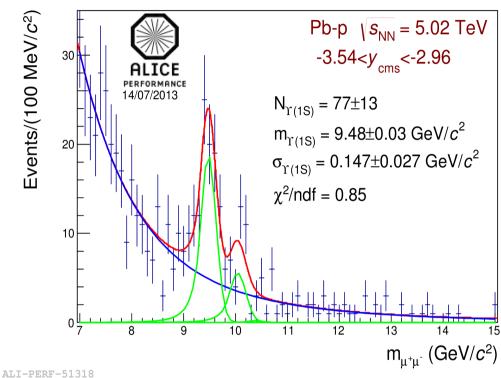
-4.0 < y < -2.5


Beam Type	Analized CMUL Events (after physics selection)
p-Pb (LHC13de)	9.274e+06
Pb-p (LHC13f)	20.913e+06

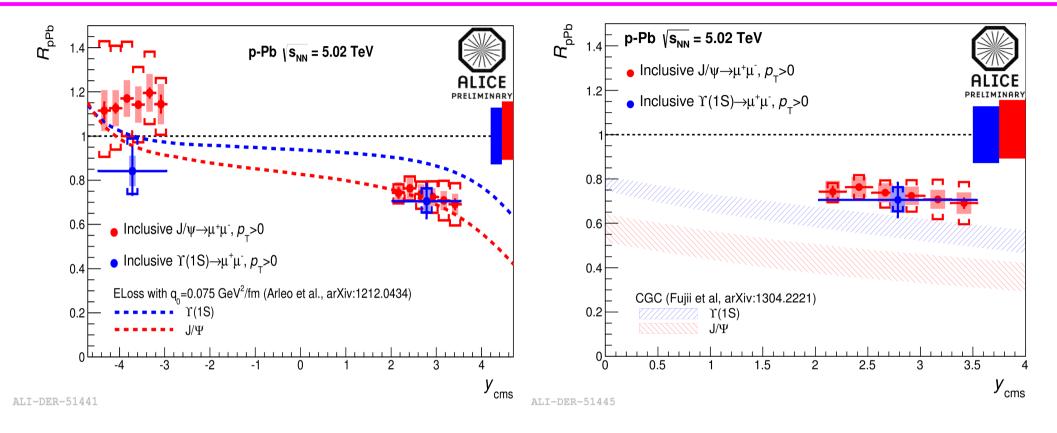

Quantity	p-Pb	Pb-p	
Rapidity Coverage	$2.035 < y_{cms} < 3.535$ $2.50 < y_{lab} < 4.00$	$2.965 < y_{cms} < 4.465$ $2.50 < y_{lab} < 4.00$	
Common Rapidity Coverage	$2.965 < y_{cms} < 3.535$ $3.43 < y_{lab} < 4.00$	$2.965 < y_{cms} < 3.535$ $2.50 < y_{lab} < 3.07$	

Signal Extraction: p-Pb and Pb-p

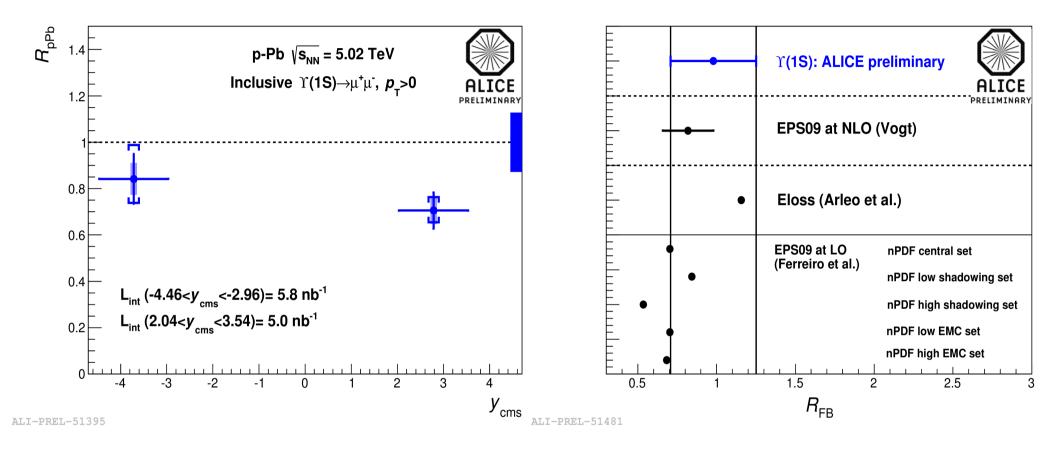



- → Tail parameters taken from pure simulation
- \rightarrow Mass, Sigma and Amplitude free for $\Upsilon(1S)$
- \rightarrow Amplitude of $\Upsilon(2S)$ and $\Upsilon(3S)$ kept free
- \rightarrow Mass and Sigma of $\Upsilon(2S)$ and $\Upsilon(3S)$ fixed from $\Upsilon(1S)$ mass and sigma values
- \rightarrow Tail Parameters of $\Upsilon(2S)$ and $\Upsilon(3S)$ are assumed to be the as that of $\Upsilon(1S)$

Invariant Mass Spectrum In Common Rapidity Region for p-Pb and Pb-p



Comparison With Models



- → Arleo et al. Model is based on parton energy loss mechanism. Although this model reproduces the suppression in backward within the uncertainties it over estimates the suppression in forward
- → Fujii et al. Model includes low-x gluon saturation and agrees with the ALICE data

Inclusive $\Upsilon(1S)$ R_{pA} and R_{FB} from ALICE

