Exploring the Phase Diagram of QCD Matter with the RHIC Beam Energy Scan

Daniel Cebra (UC Davis)

Outline:

STAR Physics Program
 Results from RHIC Beam Energy Scan I
 Future Physics program

International Conference on Matter at Extreme Conditions: Then and Now Bose Institute Kolkata, India

17/Jan/2014

Professor Daniel Cebra

Slide 2 of 30

RHIC Physics Focus

- Study medium properties, EoS
- pQCD in hot and dense medium
- 2) RHIC beam energy scan (BES)
 - Search for the **QCD critical point**
 - Chiral symmetry restoration

Critical point?

Color Super-

conductor?

Net Baryon Density

Neutron stars

Hadrons

Nuclei

QGP and Antimatter Discoveries at RHIC

International Conference on Matter at Extreme Conditions: Then and Now Bose Institute Kolkata, India

The RHIC Beam Energy Scan I

• We built RHIC to find the QGP. And we did it!

• But QGP is a new and complicated phase of matter. We have made huge progress in understanding its nature. At high energy, we expect a **cross-over** transition. At lower energy there should be a **first order** transition and a **critical point**.

• To explore the structure of the QCD matter phase diagram we run a beam energy scan at RHIC

- Three Goals of BES program:
 - Turn-off of QGP signatures
 - Find critical point
 - Search for phase boundary

Relativistic Heavy Ion Collider

Brookhaven National Laboratory (BNL), Upton, NY

Animation M. Lisa

STAR Experiment

Central Au+Au at 7.7 GeV

Particle Identification

17/Jan/2014

International Conference on Matter at Extreme Conditions: Then and Now Bose Institute Kolkata, India

Slide 10 of 30

(1) Bulk Properties at Freeze-out

Chemical Freeze-out: (GCE)

- Central collisions => higher values of T_{ch} and μ_B !
- The effect is stronger at lower energy.

Kinetic Freeze-out:

- Central collisions => lower value of
 T_{kin} and larger collectivity *B*
- Stronger collectivity at higher energy

(2) Di-electron Production

- 1) Direct radiation, penetrating-bulk probe, great addition to STAR!
- Beam energy, p_T, centrality, mass dependence (8-10x more events):
 R_{AA}, v₂, radial expansion, HBT, polarization, ...
- 3) HFT/MTD upgrades: key for the correlated charm contributions.

BES Dependence of Di-electrons

- 1) With in-medium broadened rho, model results are consistent with experimental data ($m_{ee} \le 1 \text{ GeV/c}^2$) at $Vs_{NN} = 200, 62.4$ and 19.6GeV
- 2) In Au+Au collisions at 200GeV, the centrality and p_T dependence results on data/hadronic cocktails ($m_{ee} \le 1 \text{ GeV/c}^2$) understood with current model calculations

17/Jan/2014

(3) BES Dependence of R_{AA}

- 1) Suppression of high p_T hadrons: one of the key signatures for the formation of QGP in high-energy nuclear collisions
- 2) The suppression is not observed in low energy Au+Au collisions, especially for $Vs_{NN} \le 11.5$ GeV

(4) Local Parity Violation

in High-Energy Nuclear Collisions

The separation between the same-charge and oppositecharge correlations.

Strong external EM field
 De-confinement and Chiral symmetry restoration

- 1) Parity-even observable, assumptions must be tested
- 2) Energy dependence & UU collisions

- S. Voloshin, PRC62, 044901(00).

- STAR: PR103, 251601; PRC81, 054908(2009)

International Conference on Matter at Extreme Conditions: Then and Now Bose Institute Kolkata, India

Slide 15 of 30

Dynamical Correlations

- (1) Below Vs_{NN} = 11.5 GeV, the splitting between the same- and opposite-sign charge pairs (SS-OS) disappear
- (2) If QGP is the source for the observed splitting at high-energy nuclear collisions \rightarrow hadronic interactions become dominant at $\sqrt{s_{NN}} \le 11.5$ GeV

(5) Collectivity: NCQ Scaling in v₂

of quark scaling and the value of v_2 of ϕ will be small.

Thermalization is assumed!

17/Jan/2014

International Conference on Matter at Extreme Conditions: Then and Now Bose Institute Kolkata, India

Collectivity v2 Measurements

- Number of constituent quark (NCQ) scaling in v₂ => partonic collectivity => deconfinement in high-energy nuclear collisions
- At Vs_{NN} < 11.5 GeV, the v₂ NCQ scaling is broken indicating hadronic interactions become dominant.

NCQ-Scaling and Phase Diagram

1) v_2 difference between particle and anti-particle related to vector coupling 2) The vector density is sensitive to baryon density

- J. Xu, Song, Ko & Li, PRL, (2014)

17/Jan/2014

International Conference on Matter at Extreme Conditions: Then and Now Bose Institute Kolkata, India

Disappearance of QGP Signatures

17/Jan/2014

International Conference on Matter at Extreme Conditions: Then and Now Bose Institute Kolkata, India

Slide 20 of 30

(6) Collectivity: Directed Flow v_1

• We see a minimum of the v_1 signal. \rightarrow Suggestive

Slide 21 of 30

300

protons

UrQMD

UrQMD

100

Center of Mass Collision Energy (GeV)

net-protons

Ì

anti-protons/2

International Conference on Matter at Extreme Conditions: Then and Now Bose Institute Kolkata, India

(7) Higher Moments

- High moments for conserved quantum numbers: *Q*,
 S, *B*, in high-energy nuclear collisions
- 2) Sensitive to critical point (ξ correlation length):

$$\left\langle \left(\delta N \right)^2 \right\rangle \approx \xi^2, \ \left\langle \left(\delta N \right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left(\delta N \right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with calculation at any order:

$$S * \sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa * \sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

 Extract susceptibilities and freeze-out temperature. An independent/important test on thermal equilibrium in heavy ion collisions.

References:

- A. Bazavov et al. *1208.1220* (NLOTE) // STAR: *PRL*105, 22303(2010) // M.
Stephanov: *PRL*102, 032301(2009) // R.V. Gavai and S. Gupta, *PLB696*, 459(2011) // S. Gupta, et al., *Science*, 332, 1525(2011) // F. Karsch et al, *PLB695*, 136(2011) // S.Ejiri etal, PLB633, 275(06) // M. Cheng et al, *PRD79*, 074505(2009) // Y. Hatta, et al, *PRL91*, 102003(2003)

Net-Q Higher Moments at RHIC

International Conference on Matter at Extreme Conditions: Then and Now Bose Institute Kolkata, India

Net-proton Higher Moments

STAR net-proton results:

- All data show deviations below Poisson beyond statistical and systematic errors in the 0-5% most central collisions for κσ² and Sσ at all energies. Larger deviation at *Vs_{NN}* ~ 20GeV
- Independent p and pbar production also reproduce the observed energy dependence of κσ² and Sσ
- 3) UrQMD model show monotonic behavior in the moment products
- Higher statistics needed for collisions at Vs_{NN} < 20 GeV. BES-II is needed.

STAR: 1309.5681, PRL accepted

Summary

(1) In high-energy nuclear collisions, √s_{NN} ≥ 200 GeV, hot and dense matter, with partonic degrees of freedom and collectivity, has been formed

(2) RHIC BES-I: [partonic] < $\mu_B \sim 110$ (MeV) ($\forall s_{NN} \ge 39$ GeV) [hadronic] > $\mu_B \sim 320$ (MeV) ($\forall s_{NN} \le 11.5$ GeV)

(3) RHIC BES-II: focus at √s_{NN} ≤ 20 GeV region with higher luminosity (x10) + iTPC: Run18 (2017)

Exploring QCD Phase Structure

e-cooling at RHIC for BES-II

- 1) BES-II at $Vs_{NN} < 20 \text{ GeV}$
- 2) RHIC e-cooling will provide increased luminosity ~ x3-10
- 3) STAR iTPC upgrade extend mid-rapidity coverage beneficial to several crucial measurements

STAR: Future Plans

Thank you!