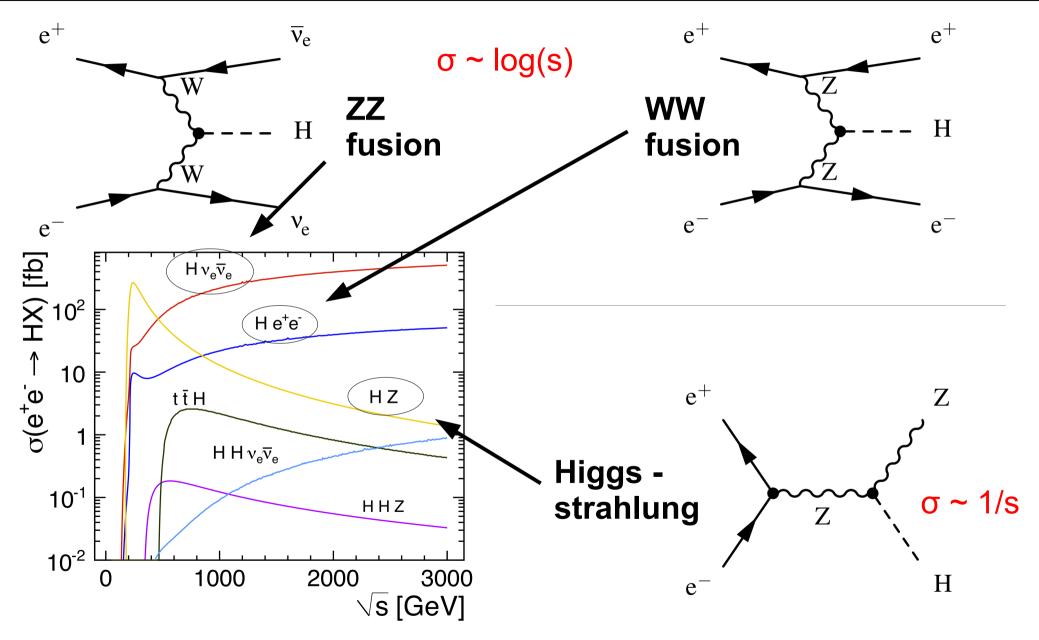
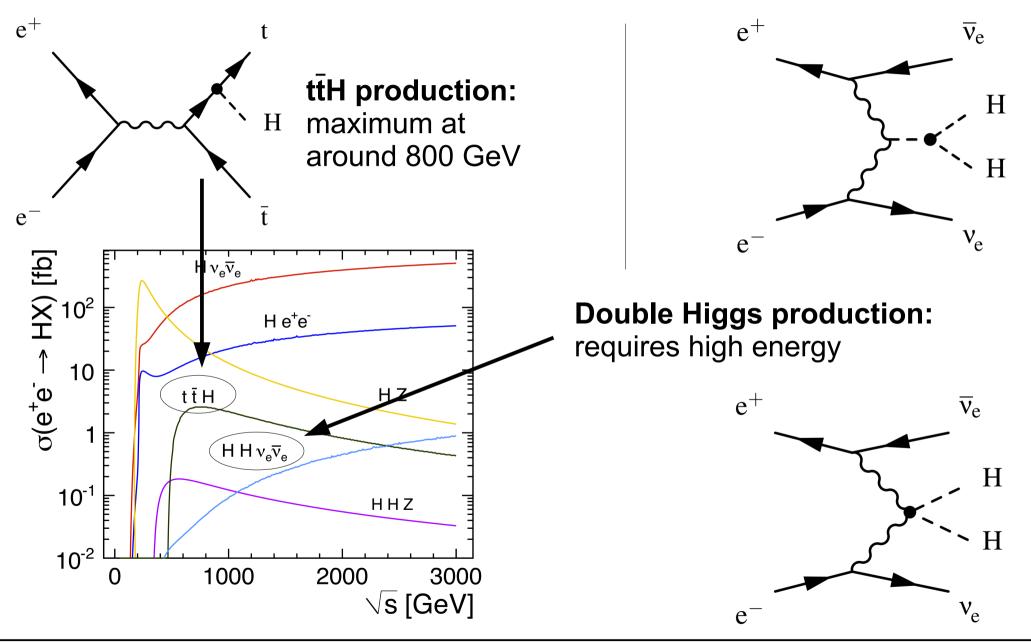


Collaboration meeting of the CLIC detector & physics study CERN, 01/10/2013



Higgs physics


Reminder: Higgs production at CLIC

Reminder: Processes at higher energy

Assumptions and numbers

Unpolarised cross sections for $m_{_{\rm H}} = 125 \text{ GeV}$ including ISR:

	350 GeV	1.4 TeV	3 TeV
$\sigma(e^+e^- \rightarrow ZH)$	134 fb	9 fb	2 fb
$\sigma(e^+e^- \rightarrow ZH)$ $\sigma(e^+e^- \rightarrow Hv_e^- v_e^-)$	52 fb	279 fb	479 fb
$\sigma(e^+e^- \rightarrow He^+e^-)$	7 fb	28 fb	49 fb

-1
C
)
0

Number of $e^+e^- \rightarrow Hvv$	Polarization	Enhancement factor	
events significantly	$P(e^-): P(e^+)$	$e^+e^- \rightarrow ZH$	$e^+e^- \to H \nu_e \overline{\nu}_e$
enhanced with	unpolarized	1.00	1.00
polarisation	-80%: 0%	1.18	1.80
	-80%:+30%	1.48	2.34

List of benchmark studies I

1.) Simultaneous extraction of $H \rightarrow b\overline{b}$, $H \rightarrow c\overline{c}$ and $H \rightarrow gg$ at 350 GeV (Jan Strube, Victoria Martin, Jonatan Rosen, Marco Szalay) and 1.4 TeV (Tomas Lastovicka)

2.) Measurement of H \rightarrow WW* at 350 GeV and 1.4 TeV (and 3 TeV?) (Mark Thomson: fully hadronic final state at 1.4 TeV and 3 TeV; Nigel Watson: qqlv final state, Mila Pandurovic: fully hadronic in HZ events at 350 GeV): - At 1.4 TeV potential for absolute Higgs to W coupling

3.) ZZ-fusion at 1.4 TeV (and 3 TeV?)

(Aidan Robson, Dan Protopopescu, Tom Doherty, project student):

- Ratio of the ZZH to WWH couplings

- Potential for other coupling measurements

4.) Higgs to gamma+gamma (Christian Grefe) and Z+gamma (Eva Sicking) at 1.4 TeV

5.) Measurement of $H \rightarrow \tau^{+}\tau^{-}$ at 350 GeV, 1.4 TeV and 3 TeV (Astrid Münnich)

6.) Measurement of $H \rightarrow \mu^{+}\mu^{-}$ at 1.4 TeV (Ivanka Bozovic-Jelisavcic, Gordana Milutinovic-Dumbelovic, Strahinja Lukic, Mila Pandurovic)

7.) Measurement of the top Yukawa coupling at 1.4 TeV (Sophie Redford, Marcelo Vogel, Philipp Roloff)

List of benchmark studies II

8.) Measurement of the Higgs self-coupling at 1.4 and 3 TeV (Tomas Lastovicka, Jan Strube (CLIC_SiD & CLIC_ILD)
+ MPI Munich (investigating potential of different analysis techniques in CLIC_ILD))

9.) Measurement of H \rightarrow ZZ* at 350 GeV and 1.4 TeV (Gordana Milutinovic-Dumbelovic, with Z-decays qqqq and qqll)

10.) Model independent measurement of $\sigma(HZ)$ using the recoil method with $Z \rightarrow q\overline{q}$ at 350 GeV (Mark Thomson)

Uncovered topics (volunteers welcome):

- 350 GeV, WW fusion, Higgs decay to WW*
- 3 TeV, WW fusion, Higgs decay to gammagamma
- 3 TeV, WW fusion, Higgs decay to Zgamma

			Statistical precision		
Channel	Measurement	Observable	350 GeV	1.4 TeV	3.0 TeV
			$500~{\rm fb}^{-1}$	1.5 ab^{-1}	2.0 ab^{-1}
ZH	Recoil mass distribution	m _H	120 MeV	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \rightarrow \mathrm{invisible})$	$\Gamma_{ m inv}$	tbd	—	—
ZH	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	tbd	—	—
$H\nu_e\overline{\nu}_e$	$H \rightarrow b\overline{b}$ mass distribution	$m_{ m H}$	—	40 MeV*	33 MeV*
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{Z} \to \ell^+ \ell^-)$	$g^2_{\rm HZZ}$	4.2%	_	_
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HZZ} g^2_{ m Hbb}/\Gamma_{ m H}$	$1\%^\dagger$	—	—
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HZZ} g^2_{ m Hcc}/\Gamma_{ m H}$	$5\%^\dagger$	—	—
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{gg})$		$6\%^\dagger$	_	_
ZH	$\sigma(\mathrm{HZ}) imes \mathit{BR}(\mathrm{H} ightarrow au^+ au^-)$	$g^2_{ m HZZ} g^2_{ m H au au}/\Gamma_{ m H}$	5.7%	—	—
ZH	$\sigma(\mathrm{HZ}) \times \mathit{BR}(\mathrm{H} \to \mathrm{WW}^*)$	$g^2_{ m HZZ}g^2_{ m HWW}/\Gamma_{ m H}$	$2\%^\dagger$	—	—
ZH	$\sigma(\mathrm{HZ}) \times BR(\mathrm{H} \to \mathrm{ZZ}^*)$	$g^2_{ m HZZ} g^2_{ m HZZ} / \Gamma_{ m H}$	tbd	—	—
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g^2_{ m HWW}g^2_{ m Hbb}/\Gamma_{ m H}$	$3\%^\dagger$	0.3%	0.2%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{c}\overline{\mathrm{c}})$	$g^2_{ m HWW}g^2_{ m Hcc}/\Gamma_{ m H}$	_	2.9%	2.7%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{gg})$		_	1.8%	1.8%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes BR(\mathrm{H} ightarrow \mathrm{\tau}^{+}\mathrm{\tau}^{-})$	$g^2_{ m HWW}g^2_{ m H au au}/\Gamma_{ m H}$	_	3.7%	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mu^{+}\mu^{-})$	$g^2_{ m HWW}g^2_{ m H\mu\mu}/\Gamma_{ m H}$	_	29%*	16%
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) imes BR(\mathrm{H} o \gamma\gamma)$		_	15%*	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{Z}\gamma)$		_	tbd	tbd
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{WW}^{*})$	$g_{ m HWW}^4/\Gamma_{ m H}$	tbd	$1.1\%^{*}$	$0.8\%^*$
$Hv_e \overline{v}_e$	$\sigma(\mathrm{Hv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}}) \times BR(\mathrm{H} \to \mathrm{ZZ}^{*})$	$g_{ m HWW}^2 g_{ m HZZ}^2/\Gamma_{ m H}$	_	$3\%^\dagger$	$2\%^\dagger$
He ⁺ e ⁻	$\sigma(\mathrm{He^+e^-}) \times BR(\mathrm{H} \to \mathrm{b}\overline{\mathrm{b}})$	$g_{ m HZZ}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	_	$1\%^\dagger$	$0.7\%^\dagger$
tĪH	$\sigma(t\bar{t}H) \times BR(H \rightarrow b\bar{b})$	$g_{ m Htt}^2 g_{ m Hbb}^2 / \Gamma_{ m H}$	_	8%	tbd
$HHv_e \overline{v}_e$	$\sigma(\mathrm{HHv_e}\overline{\mathrm{v}_e})$	8HHWW	_	$7\%^*$	3%*
$HHv_{e}\overline{v}_{e}$	$\sigma(\mathrm{HHv}_{\mathrm{e}}\overline{\mathrm{v}}_{\mathrm{e}})$	λ	—	28%	16%
$HHv_e \overline{v}_e$	with $-80\% e^-$ polarization	λ	—	21%	12%

arXiv:1307.5288 final update: 01/10/2013 (yesterday)

- [†]: estimate
- *: preliminary

Several updates since the summer

02/07/2013

Philipp Roloff

Tuesday morning:

Mark Thomson: $H \rightarrow WW^*$ at <u>1</u>.4 TeV and nearly model-independent $HZ \rightarrow Hqq$ at 350 GeV Christian Grefe: $H \rightarrow \gamma\gamma$, $H \rightarrow Z\gamma$ at 1.4 TeV Gordana Milutinovic-Dumbelovic: $H \rightarrow \mu^+\mu^-$ at 1.4 TeV

Wednesday morning:

Jan Strube: Higgs self-coupling at 1.4 and 3 TeV Aidan Robson: ZZ-fusion at 1.4 TeV Marcelo Vogel: ttH at 1.4 TeV

Combined analysis

+3.0 TeV

 $+2.0 \text{ ab}^{-1}$

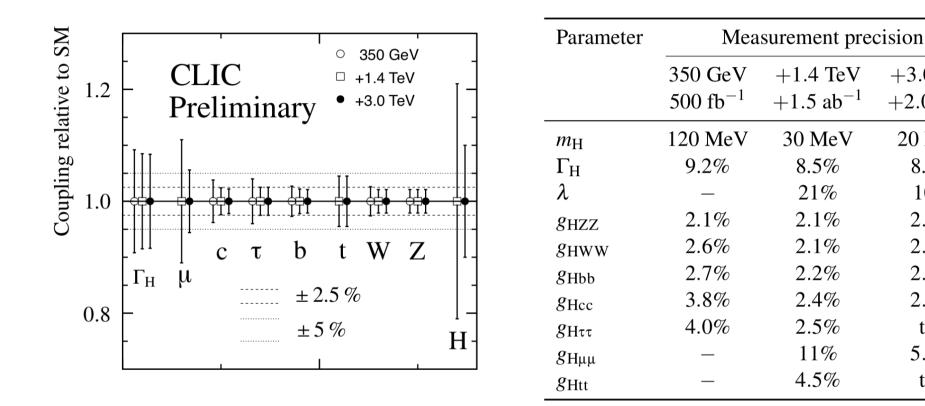
20 MeV

8.4%

10%

2.1%

2.1%


2.1%

2.2%

tbd

5.6%

tbd

- Fit to currently available results and a few estimates (see slide 8)
- Fully model-independent

Measurement precision			Γ_i
350 GeV 500 fb ⁻¹	$+1.4 \text{ TeV} +1.5 \text{ ab}^{-1}$	$+3.0 \text{ TeV} \\ +2.0 \text{ ab}^{-1}$	$\kappa_i = \frac{1}{\Gamma_i^{\text{SM}}}$
1.6%	0.29%	0.22%	No invisible decays:
1.5%	0.15%	0.11%	$\Gamma_{\mathrm{H,model}} = \sum_{i} \kappa_{i}^{2} \cdot BR_{i}^{\mathrm{SM}}$
1.7% 3.1%	$0.33\% \\ 1.1\%$	$0.21\% \\ 0.75\%$	Sub-percent
3.5%	1.4%	tbd	precisions at high energy
_	4.0%	tbd	
3.6%	0.79% 5.5%	0.56% tbd	→ Results strongly dependent on fit assumptions
	350 GeV 500 fb ⁻¹ 1.6% 0.49% 1.5% 1.7% 3.1% 3.5% - -	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Next step: CLIC Higgs paper

Structure of the paper:

- 1.) Introduction
- 2.) Accelerator & detectors
- 3.) Monte Carlo generators, simulation and reconstruction tools
- 4.) Overview of Higgs production at CLIC
- 5.) Higgsstrahlung at 350 GeV
- 6.) Vector-boson fusion
- 7.) top Yukawa coupling
- 8.) Higgs self-coupling
- 9.) Higgs mass
- 10.) Combined analysis
- 11.) Summary and conclusions

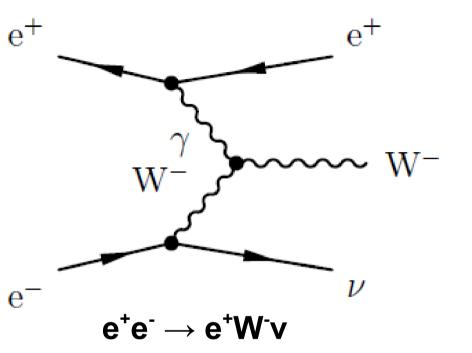
Deadline: end of the year!

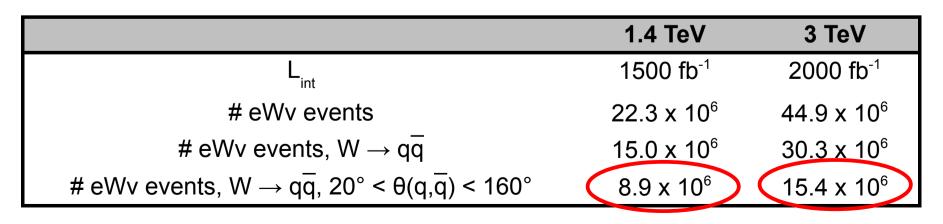
Ideas / plans for future studies

Precision EW measurements

clc

• Triple and quartic gauge boson vertex corrections to $e^+e^- \rightarrow W^+W^-(vv/e^+e^-)$


- Forward-backward and left-right asymmetries of fermion production to achieve precision measurements of $sin^2 \theta_f^{eff}$ at various energies
- W boson mass determination at high energy and high luminosity
- Total $e^+e^- \rightarrow f\bar{f}$ cross sections at high energy with various electron-positron polarisations in search of form-factor suppressions or enhancements



M_w from single W events

- Large samples of single W events produced at high-energy CLIC
- Potential for competitive measurement of $M_{_W}\,using\,W^{_\pm}\to q\overline{q}$
- Need full simulation study to understand the impact of systematic effects, i.e. the jet energy scale

Study potential to use top quarks as probe for New Physics:

- Production asymmetries
- Couplings to γ, W and Z
- CP violation in top sector
- Flavour changing top decays

Mayor focus of CLIC physics at high energy!

- Model-independent searches for Dark Matter \rightarrow see talk by J.J. Blaising
- Composite Higgs bosons \rightarrow see talk by Roberto Contino
- Generalisation of higher-dimensional effective operator searches at the various CLIC energy stages
- Searches for weakly interacting exotic particles
- Searches for vectorlike particles charged under electroweak group
- Responding to theory guidance for New Physics that is compatible and explains LHC data in the future

Regular analysis meetings at CERN (every 2-3 weeks):

http://indico.cern.ch/categoryDisplay.py?categId=3222

Remote participation by webex is always possible!

If interested, please contact us:

mark.thomson@hep.phy.cam.ac.uk philipp.roloff@cern.ch

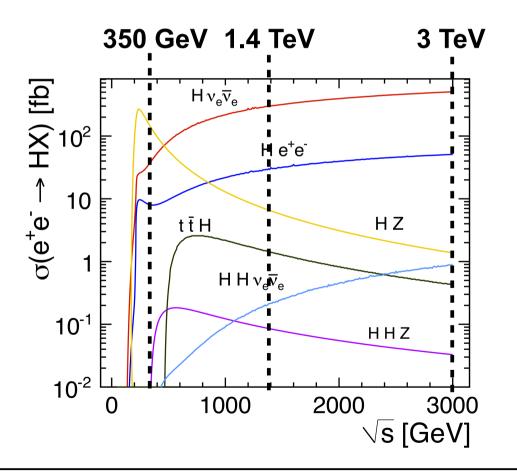
- CLIC physics benchmark studies are a very active area
- Contributions from many groups / individuals
- In the last few months we have focussed on Higgs physics
- Plan to finish the comprehensive paper on Higgs physics from 350 GeV to 3 TeV by the end of the year

Backup slides

CLIC energy stages

- CLIC will be implemented in stages: optimised running conditions over a wide energy range
- The energy stages are defined by physics with additional technical considerations
- \rightarrow strategy can be adapted to discoveries at the LHC

Currently studied example scenario:


• <u>Stage 1: 350/375 GeV</u>, 500 fb⁻¹ HZ cross section, mass, Hv v c contribution sizeable, various branching rations, *top threshold scan*

• <u>Stage 2:</u> 1.4 <u>TeV</u>, 1.5 ab⁻¹

BSM physics, ttH, Higgs self-coupling, rare Higgs decays

• <u>Stage 3:</u> 3 TeV, 2 ab⁻¹

BSM physics, ttH, Higgs self-coupling, rare Higgs decays

