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QDO study & design requirements

OD0 Baseline Parameter Value

Nominal target for field gradient 575 T/m

Magnetic length 2.73m

Magnet aperture (required for beam) 7.6 mm
8.25 mm*

Magnet bore diameter * Including a 0.30 mm vacuum chamber
thickness

Good field region (GFR) radius 1 mm

Integrated field gradient error inside GFR <0.1%

Gradient adjustment +0 to -20%

Magnet design boundary conditions:

- As much as possible compact design (to be compatible with an L™ of 3.5 m, so minimizing the solid angle
subtracted to the experiment Detector)

-  Compatible with magnet active stabilization (i.e. minimize magnet weight and vibration sources, ex. coil water
cooling)

-  Presence of the post-collision line beam vacuum chamber (in its closer position at 35 mm from beam axis)







The “Single Stretched Wire” and “Rotated Vibrating Wire” MM System
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Two campaign of measurements were done in 2012 with QDO prototype in two different configuration:
- in January 2012: the magnet equipped with the Nd,Fe,,B blocks was measured with the Vibrating wire system
- in August 2012: the same type of measurement was done for the configuration with Sm,Co,,blocks.

Here below are shown the measurements of the MEASURED Gradient (red dots) (extrapolated from the INTEGRATED GRADIENT
effectively measured), together with the COMPUTED Gradient (blue curves).
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The measured Gradient in the configuration with Sm,Co,- blocks it is in very good agreement with the FEA computation. This is not the
case for the Nd,Fe;,B blocks were a difference of ~ - 6% is visible. This could have 2 possible explanation but the 15t was then excluded
by a 2" FEA cross-check:

-The Permendur saturate at lower level than expected. = The magnetization curve extracted from the Test Report of the raw material
provided by the Supplier was utilized for the FEA computation that confirm that the problem is not coming by the Permendur quality.

-The quality (magnetization module and/or direction) of the Nd,Fe;,B PM blocks is not the expected one > we should get more
indication of this possibility when the PM blocks measuring device (by Helmholtz coils) will be delivery to the MM Section.



2. Preliminary considerations for CLIC SDO sextupole design:

“Closed yoke” version: “Open yoke” version:
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Main parameters: Bl 1010 steel yoke
Apertur:(rad;l:s}: 4.3 mm Permanent magnet blocks (NdFeB)
Max. Achievable ] Post-collision line
Sextupole gradient: 220 000 T/m?
Magnetic length 250 mm
Amperturns NI 5300 Amps

A. Aloev, M. Modena at: “29th MDI meeting": 14th December 2012
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1 m spoke raw data; 6 mm spring clearance
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Figure 7.10: 4 day Rasnik measurement of the expansion of granite table
and temperature. The x coordinate is in the length direction of the 1 m
Zerodur spoke
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/ @ Stabilization update A.Jeremie et al
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Gaél Balik - LAPP CERN CLIC MDI (CLIC Machine Detector Interface) - 2012-03-16 5



L.Br ""7{*" Mechanical active stabilisation — experimental setup

/ e  Control architecture :

= Used sensors :

- Geophones : GURALP
CMG-6T

- Accelerometers :
WILCOXON 731A

Matlab and dSPACE ControlDesk
For monitoring and analysis

dSPACE
Real time hardware for
Rapid Control Prototyping

e, 4 = l»
Amplifiers, filters input/output board

for signal conditioning

v" All is taken into account in simulation (noise, ADC, DAC...).

lapp)



Mechanical active stabilisation — Results

* Simulation and experimental results (RMS) :

=+ Experimental - Ground Motion

—— Experimental - Quadrupole Motion

RMS displacement
S,
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Frequency [Hz]

» Publication in progress (accepted) : Balik et al, “Active control of a subnanometer
isolator*, JIMMSS.

Limited by sensor noise — working on better sensors
lapp,



B-CC""‘O/ New development

/ Dummy QDO magnet stabilization

34757 elements

Up to 20 modes
m to be found

Positions of active
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« QDO Model Ansys-> Matlab ->simulink
* Multi-support simulation -> demonstrator



Christophe Collette started study of alternative approach: stiffening with cables
Finite element model (Full scale)

Eoctite: = 6.7 107 N/m
Lisapte = 3.32 112
deqtiie = 99.64 mam
BFesne = 180 Gpa,

Resonances
/ frequencies
\ multiplied by 2

Q: Where to fix the cables?

mode 1 mode 2
52.78 Hz, 54.15 Hz

C. Collette, LCWS 12 (October 25, 2012)



Numerical results
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Small-scale mock-up in Brussels:

Experimental set-up

1. Cantilevered tube
(corresp. to flexible structure

. Rigid frame

. Carbon cables

Piezoelectric actuator
Force sensor
Dedicated fixation/tension s
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LC intra-train feedback system - concept

Last line of defence
againstrelative beam
Kicker

misalignment /

Measure vertical position
of outgoing beam and @
hence beam-beam
kick angle
Use fast amplifier and ‘q
Kicker to correct Q

vertical position of
beam incomingto IR

FONT - Feedback On Nanosecond Timescales




IP FB Design Status: CLIC

Conceptual design developed and documented in CLIC CDR (2011)

NB primary method for control of beam collision overlap is via vibration

isolation of the FF magnets, and dynamic correction of residual component
motions

IP position feedback:
allows IP beam position correction of +- 50 nm of vertical beam motion,

and possibility to correct within bunchtrain duration

More realisticengineering design can be developed in next project phase



CLIC prototype: FONT3 at KEK/ATF

kicker

A

BPM resolution~ 1um
Latency ~ 23ns
Drive power > +-50nm @ CLIC
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The new analysis  The 3D model

The 3D model, a zoom in the QDO region




The new analysis The new anti-solenoid refinement

Residual field (BZ) inside QDO

i
' 7500500 « 000
38010 1E0

Excellent performance of anti-solenoid, ,
still some issues at the QDO extremity @‘




Antonio Bartalesi

Main improvements

Ferromagnetic disc removed

/

One coil removed (how 5 coils in total)



Field maps — BZ
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Energy deposition in beamline
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Magnet lifetime

[TUPCO028 IPAC 2011], V1 is the original post-collision line, V2 is the
changed version with iron masks and 2m longer intermediate dump.
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Lawrence Deacon e!b

Intermediate dump
Distance from IP = 27.5m
_ Main dump
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* Fewer magnets

* Downstream magnet further from intermediate
dump

— Less radiation damage

* Mask in front of last bending magnet coils



Magnet lifetime studv new PCL

* New results

— Right: energy dep. In
magnet coil

insulation material
[W/cm?]

— Top right: 1 litre voxels,
magnet lifetime is
68000 +/- 7000

— Bottom right: 125 cm”®
voxels lifetime 900 +/-
100 years
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So the questions are

How much luminosity does one loose (on paper)?
How much acceptance can one gain (on paper)?

How serious is the luminosity loss with respect to the difficulties
to keep it stable inside the detector environment, i.e. are there
effective luminosity losses due to such issues for the short L* ?

What is the net balance between luminosity and acceptance in
terms of the physics reach?

This will soon be addressed



RECENT IDEAS

Following discussions in the Hamburg LC2013 workshop, stronger collaboration
between the BDS and MDI groups for CLIC and ILCis encouraged.

Recently a first phone meeting took place to initiate this. Most of the projects
concern BDS rather than MDI. The MDl is rather different for CLIC.

However, there is an interest to study a possible use of the CLIC QDO hybrid technology
for the ILC case. Discussions are starting to organise this study, starting asap.
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