Study of the CLIC_ILD ECAL performance with tau decays

Angela Lucaci-Timoce

CLIC ECAL studies

ECAL in CLIC ILD CDR

- Sampling calorimeter: 30 layers of silicon-tungsten (23 X_0 , 1 λ_I)
 - 30 tungsten absorber plates:
 - $2.1 \text{ mm} \times 20 \approx 0.6 X_0$
 - 4.2 mm $\times 10 \approx 1.2 X_0$
 - 0.5 mm thick silicon cells of 5.1×5.1 mm²

- CLIC II D CDR: ECAL is the cost driver (35%), mostly due to the price of the Si wafers
- Would like to decrease the price without loosing performance ⇒ optimisation studies

CLIC ECAL studies (continued)

- Optimisation studies: variation of layer numbers, hybrid ECAL (silicon plus scintillator), variation of absorber thicknesses, etc.
- Performance studied in terms of e.g. energy resolution: see **talk by John Marshall**
- ullet Or look at how well close-by photons can be separated \Rightarrow tau decays
- Look at non-strange hadronic tau decays, with a single charged hadron (1-prong)

au decay mode	Branching ratio [PDG]	Resonance
$ \begin{array}{c} \tau^- \to \pi^- \nu_\tau \\ \tau^- \to (\pi^- \pi^0) \nu_\tau \\ \tau^- \to (\pi^- \pi^0 \pi^0) \nu_\tau \end{array} $	$(10.91 \pm 0.07)\%$ $(25.51 \pm 0.09)\%$ $(9.51 \pm 0.11)\%$	$ \rho(770) $ $ a_1(1260) $

• Photons from π^0 decays are highly collimated \Rightarrow challenge for photon reconstruction in ECAL

Photons at Monte Carlo level

Energy

Angle

Data samples

- $e^+e^-
 ightarrow au^+ au^-$ at $\sqrt{s}=$ 100, 200, 500 and 1000 GeV
- Signal only (no beamstrahlung, no ISR, no background)

Analysis method

- Neglecting radiative effect, au^+ and au^- are produced back-to-back
- Find the **thrust axis** \vec{n}_T which maximises the following quantity:

$$T = \max\left(rac{\sum_i |\vec{p_i}\cdot\vec{n}_T|}{\sum_i |\vec{p_i}|}
ight)$$
, where the sum extends over all particles in the event

• Split event into **2 hemispheres**, each associated to a candidate τ decay, by a plane perpendicular to the thrust axis and passing through the centre of the interaction region

Selection of events

- Only look at the barrel region in the moment: $|\cos \theta| < 0.7$
- Other requirements:
 - Invariant mass from sum of all 4-vectors in each hemisphere < 2 GeV
 - 1 charged pion in each hemisphere

Identify decay type based on TMVA with Boosted Decision Trees

• 3 input variables:

• BDT value chosen to maximise the statistical significance $S/\sqrt{S+B}$ (S=signal, B=background)

a_1 invariant mass

ullet a_1 invariant mass seems distorted at high energies: can we do better?

Comparison of Pandora algorithms

Perfect photon

- Replaces the standalone photon algorithm with a PerfectClustering algorithm, which collects together calo hits associated with MC photons, forms clusters and guarantees they will form photon PFOs
- The cluster energies are not cheated.

Perfect photon

Number of reconstructed photons for signal events

- With increasing energy, the photons are more and more collimated, hence more difficult to reconstruct
- E.g. in a_1 decay expect on average 4 reconstructed photons

Comparisons of ECAL configurations

- **ECAL Si**: silicon, $5 \times 5 \times 0.5$ mm³ cells
- **ECAL Sc**: scintillator, $5 \times 5 \times 2$ mm³ cells

$\sqrt{s} = 1000 \text{ GeV}$							
•	True $ au$		BDT classification				
	decay	mode	π^-	ρ	a_1		
•	_	Si	84%	6%	3%		
7	π	Sc	85%	6%	3%		
		Si	15%	73%	69%		
ŀ	ρ	Sc	14%	75%	72%		
		Si	1%	21%	27%		
	a_1	Sc	1%	19%	25%		

• Define BDT classification efficiency as:

Comparison of ECAL configurations

- **ECAL Si**: silicon, $5 \times 5 \times 0.5$ mm³ cells
- **ECAL Sc**: scintillator, $5 \times 5 \times 2$ mm³ cells

• BDT classification efficiencies similar for the two ECAL configurations (some differences in the case of a_1 decay)

Comparison of Pandora algorithms

- **Default settings**: default PFA reconstruction
- **Perfect photon**: PerfectClustering algorithm for photons

 With increasing energy, photons are more difficult to reconstruct (unless PerfectClustering is used)

Summary

- Use photons from 1 prong tau decays to test ECAL performance
- Decay products identified with the hemisphere method
- Decay type identified with TMVA based on boosted decision trees
- With increasing \sqrt{s} the photons are closer to the leading meson, hence more difficult to reconstruct

Next

Apply analysis for different ECAL hybrid configurations

Credits

- Mark Thomson: suggested the analysis method
- John Marshall: Mokka and Pandora reconstruction steering files
- Philipp Roloff: Whizard generator files

BACKUP

Data samples

- $e^+e^- \rightarrow au^+ au^-$ at $\sqrt{s}=$ 100, 200, 500 and 1000 GeV
- Signal only (no beamstrahlung, no ISR, no background)

Mokka

- Model ILD_o1_v05 with ECAL from SEcal05 (silicon, cell size 5 × 5 mm²)
- SVN revision 455

ILC software

 Version v01-16-02, but with trunk of PandoraPFANew, MarlinPandora and Marlin Reco