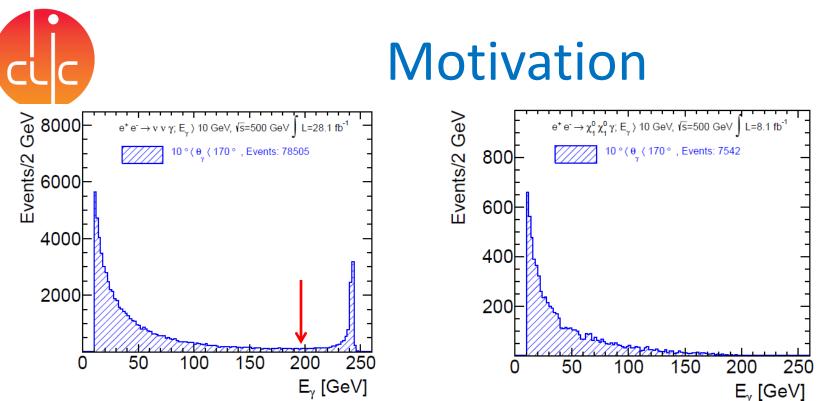


Single-photon events and Search for DM at CLIC

OUTLINE

- Motivation and Goal
- Processes and Cross Sections
- SM Background reduction methods
- Cross section measurement Requirements
- Summary and prospects



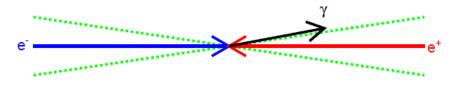
- t-channel W exchange (4)
- GeV t-channel W fusion (small) (3) Events / 200 At LEP with $\int L = 0.62 \text{ fb}^{-1}$ the number of 100 Light v was determined (high E_{γ}), Limits on BSM parameters were set (Low Ey). 50 100 150 Recoil Mass (GeV)

300

N = 2

200

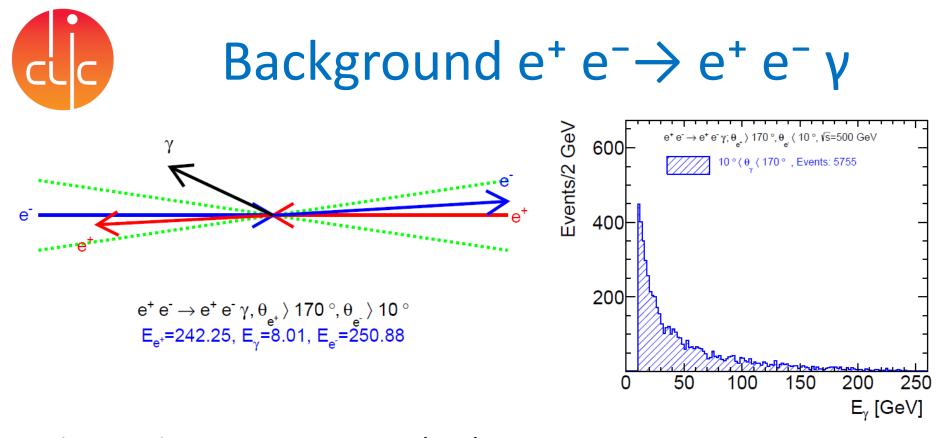
At CLIC at 500 GeV, with $\int L=500 \text{ fb}^{-1}$ could perform a high precision measurement of the e⁺ e⁻ \rightarrow v v γ cross section.


Left plot dN/dE: $e^+ e^- \rightarrow v v \gamma$; the Z exchange events (s-channel) are removed requiring E γ < 200 GeV.

A discrepancy between the measured cross section and the SM expected value would be a hint of BSM physics, e.g Susy, or large ED. Right plot dN/dE: $e^+ e^- \rightarrow \tilde{\chi}^{o_1} \tilde{\chi}^{o_1} \gamma$, (model III, $m \tilde{\chi}^{o} = 100$ GeV)

CLIC-WS 1 October 2013

Goal and Event Selection


The goal of this study is to:

 $\begin{array}{c} e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \mathop{\rightarrow} \nu \, \nu \, \gamma \ , \ 10^{\circ} \langle \ \theta_{\gamma} \ \langle \ 170^{\circ} \\ E_{\gamma} = 14.68 \ GeV \end{array}$

- Characterize the requirements for a precise measurement of the differential cross sections $dN/dE\gamma$ of the process: $e^+ e^- \rightarrow v v \gamma$.
- Estimate the minimum cross section of the process $e^+ e^- \rightarrow X X \gamma$ (X is invisible), which could be measured with 5σ significance.

Event generation: Whizard1 with Beamstrahlung, ISR and FSR. Event Selection:

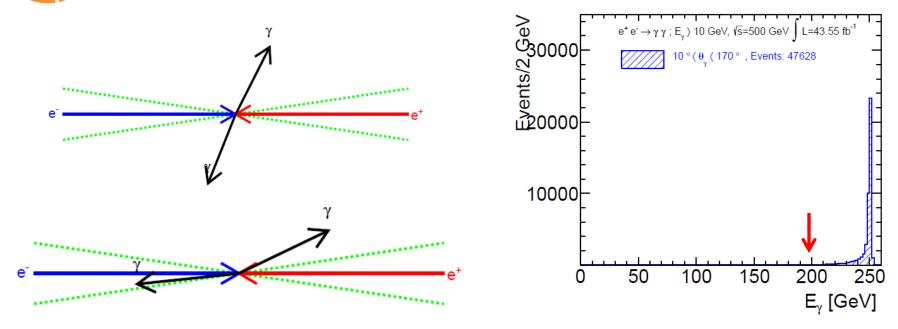
Select single- γ events with and $10^{\circ} < \theta \gamma < 170^{\circ}$; the angular region where the tracking system allows an effective γ identification. For E γ >10 GeV σ (e⁺ e⁻ \rightarrow v v γ) = 2790 fb Remove Z exchange events: E γ < 200 GeV => σ =2414 fb.

e⁺ e⁻ \rightarrow e⁺ e⁻ γ can mimic single-photon events: For Eγ > 10 GeV and 10^o < θγ < 170^o, σ = 7.69 10⁵ fb (right plot) The γ energy spectrum is similar to the v v γ spectrum. For Eγ < 200 GeV, σ = 7.50 10⁵ fb

To remove these events the energy measurement in the Ecal end cap, LumiCal and BeamCal detectors is used.

CLIC-WS 1 October 2013

$e^+ e^- \rightarrow e^+ e^- \gamma$ veto


e± tagging

The tagging efficiency was estimated using full simulation: for $\theta > 40$ mrad; LumiCal and EndCap, single tag efficiency=0.99 for $\theta < 40$ mrad; BeamCal, the tag efficiency =F(θ , E) ; takes into account the inefficiency coming from the energy deposition of Beamstrahlung pair background (Andre Sailer). EvTag inefficiency is (1-tag1)(1-tag2) : Table: EvTag inefficiency for 3 event samples:

	√s GeV	500 %Events	500 EvTag inefficiency ε
Εγ > 10	e⁺ and e⁻ < 40 mrad	0.14	0.024
	e ⁺ or e ⁻ < 40 mrad	0.59	0.001
	e ⁺ and e ⁻ > 40 mrad	0.27	0.0001
	Whole detector		0.004

The veto inefficiency at very low angle contributes 85% of σ . Tagging reduces σ (e⁺ e⁻ \rightarrow e⁺ e⁻ γ) from 7.50 10⁵ fb \searrow 3000 fb. CLIC-WS 1 October 2013

Background $e^+ e^- \rightarrow \gamma \gamma$

 $e^+ e^- \rightarrow \gamma \gamma$

e⁺ e⁻ $\rightarrow \gamma \gamma$ can also fake v v γ events. For E $\gamma > 10$ GeV and $10^{\circ} < \theta \gamma < 170^{\circ} \sigma = 2416$ fb Requiring E $\gamma < 200$ GeV $rac{}$ $\sigma = 32.7$ fb Using the energy measurement in the LumiCal reduces the cross section down to 1 fb.

CLIC-WS 1 October 2013

J-J.Blaising, LAPP/IN2P3

Cross Sections, Vs =500 GeV No Polarization

√s (GeV)		500 σ (fb) Εγ>10	500 σ (fb) 10< Εγ<200 GeV	500 σ (fb) 10< Eγ<200 GeV Energy Tag
Process 1	$e^{\scriptscriptstyle +} e^{\scriptscriptstyle -} \! \! \rightarrow \nu \nu \gamma$	2.79 E+03	2.41E+03	2.41E+03 ± 2.2
2	$e^+ e^- \rightarrow e^+ e^- \gamma$	7.69 E+05	7.57 E+05	3.00E+03 ± 2.5
3	e⁺ e⁻→γγ	2.42 E+03	8.03E+01	$1.01E+00 \pm 0.04$
Total				5.41E+03 ± 3.3

Table: Cross section values for $10^{\circ} < \theta \gamma < 170^{\circ}$ and different selection cuts, no polarization.

After selection, the e⁺ e⁻ γ background is larger than the v v γ process. With $\int L=500 \text{ fb}^{-1}$, ignoring syst errors, the sum of SM processes could be measured with a statistical accuracy $\Delta \sigma=3.3 \text{ fb}$; the minimal cross section excess which could be measured with 5 σ CL is 16.5 fb.

Systematic Error Requirements at 500 GeV

To assess the physics potential of such measurement requires taking into account the systematic errors. $\Delta\sigma_{(syst)} = F(\Delta\sigma Th, \Delta\epsilon\gamma, \Delta\epsilon\nu, \Delta L)$ Table: σ , $\epsilon\gamma$, $\epsilon\nu$ and assumptions to keep the total systematic error close to the statistical error (3.3 fb).

Vs (GeV) Process	500 σ (fb)	εγ %	εv %	Δσth/σth	Δε/ε	σ fb	Δσ fb
$e^+ e^- \rightarrow v v \gamma$	2.79 E+03	86.4		10 ⁻³	10-3	2.41E+03	3.4
$e^+ e^- \rightarrow e^+ e^- \gamma$	7.69 E+05	97.5	0.4	10 ⁻³	10-3	3.00E+03	5.2
$e^+ e^- \rightarrow \gamma \gamma$	2.49 E+03	3.32	1.	10 ⁻³	10-3	1.01E+00	0.01
Sum						5.41E+03	6.2

 $\Delta \sigma$ Th/ σ Th = 10⁻³, $\Delta \epsilon / \epsilon = 10^{-3} (\epsilon \gamma, \epsilon v) \Delta L / L = 5.10^{-4}$.

To reach such small errors is very challenging.

With polarization the total systematic error could be reduced to 5.4 fb; => 5 σ cross section limits of 31 fb and 27 fb respectively.

CLIC-WS I OCIODEI 2013

J-J.DIAISING, LAFT/INZTO

Systematic Errors at 500 GeV

With more realistic selection efficiency errors $\Delta \epsilon / \epsilon = 10^{-2}$ and $\Delta \sigma_{Th} / \sigma_{Th} = 10^{-3}$ and $\Delta L/L = 0.5 \ 10^{-3}$.

√s (GeV) Process	500 σ (fb)	εγ %	εv %	Δσth/σth	Δε/ε	σ fb	Δσ fb
$e^+ e^- \rightarrow v v \gamma$	2.79 E+03	86.4		10-3	10-2	2.41E+03	24.2
$e^+ e^- \rightarrow e^+ e^- \gamma$	7.69 E+05	97.5	0.4	10 ⁻³	10-2	3.00E+03	42.6
e⁺ e⁻→γγ	2.49 E+03	3.32	1.	10 ⁻³	10-2	1.01E+00	0.01
Sum						5.41E+03	49.0

The total error increases to 49.0 fb, the 5 sigma cross section limit increases to 245 fb; poor measurement; 218 fb with e⁻ polarization. It shows that a good estimation of the th and exp errors is crucial to obtain a realistic picture of the physics potential of this channel. It is also essential to measure accurately εγ and εν.

CLIC-WS 1 October 2013

J-J.Blaising, LAPP/IN2P3

The control of the experimental systematic errors is a major issue for this measurement; to reach a low cross section limit requires; all relative errors to be $<< 10^{-2}$.

With realistic selection efficiency errors $\Delta \epsilon/\epsilon = 10^{-2}$ and assuming $\Delta \sigma_{Th}/\sigma_{Th} = 10^{-3}$ and $\Delta L/L = 0.5 \ 10^{-3}$ the 5 sigma cross section limit is 245 fb.

To improve the physics potential requires:

- A smaller BeamCal veto inefficiency to reduce the e⁺ e⁻ γ background.
- Accurate measurement of the γ selection efficiency and of the veto inefficiency.

Prospects

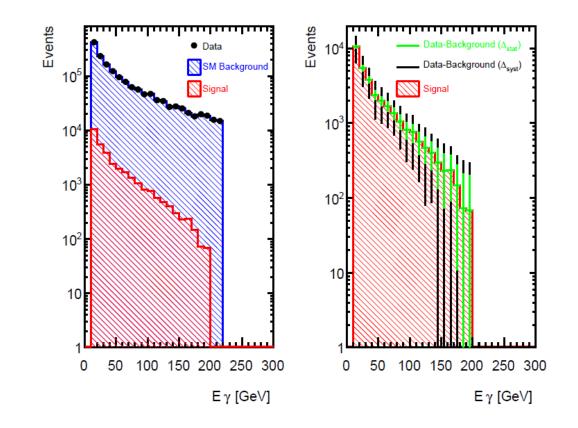
Assuming that

- $\Delta\sigma/\sigma < 10^{-3}$ for theoretical cross section (with BS, ISR, FSR)
- $\Delta L/L < 10^{-3}$ reachable ;

Identify the processes providing the statistics to reach $\Delta \varepsilon / \varepsilon <<10^{-2}$ Demonstrate, with full simulation, that:

- The efficiencies can be measured with $\Delta \epsilon / \epsilon << 10^{-2}$
 - Photon selection εγ
 - Veto efficiency, εν

Investigate the possibility to reduce the BeamCal veto inefficiency at 500 GeV. The current inefficiency is obtained using the 3 Tev tag efficiency function $F(\theta, E)$ and scaling the energy E of the e± or γ by 3000/500.


CLIC-WS 1 October 2013

S+B and Data Plots

Signal cross section 55 fb, with polarization (x1.5), $\int L=500 \text{ fb}^{-1}$ Left S+B plot Right, Data = S+B - B ; (stat err, green; syst err, black)

J-J.Blaising, LAPP/IN2P3