Exploring Quark Gluon Plasmausing

Photons, Jets, & Heavy Quarks

Dinesh K. Srivastava Variable Energy Cyclotron Centre Kolkata 700 064, India

Quantum Chromo Dynamics

- * $V(r) \sim \alpha_s(Q)/r + \sigma r$
- * Small r (large Q): $\alpha_s(Q^2) \rightarrow 0$, quarks behave as free particles: Asymptotic Freedom.
- Large r (small Q):the second term goes to infinity;Infrared Slavery,No Free Quarks or Gluons.
- Different from any other interactionwe have come across.

$$\alpha_{\rm s}(Q^2) \approx \frac{12\pi}{(33 - 2n_{\rm f}) \ln{(Q^2 / \Lambda_{\rm QCD}^2)}}$$

Achieved via quarks in 3 colours and 8 type of gluons all of which carry colour charge.

Quark Gluon Plasma

F. Karsch, Prog. Theor. Phys. Suppl. 153, 106 (2004)

- ♣ Lattice QCD predicts transition to deconfined Quark Gluon Plasma phase at ~175MeV.
- ♣ Goal of Relativistic Heavy Ion Collisions to produce and characterize QGP.

Thirty seven years ago:

E. L. Feinberg, Nuv. Cim. A 34 (1976) 391, pointed out that:

Direct photons; real or virtual are penetrating probes for the bulk matter produced in hadronic collisions, as

- They do not interact strongly.
- They have a large mean free path.

Since then relentless efforts by researchers from across the world have established these as reliable probes of hot and dense matter.

The Information Content of EM Probes

Emission rates:

Photons:

$$\omega \frac{d^3 R}{d^3 k} = -\frac{g^{\mu\nu}}{(2\pi)^3} \operatorname{Im} \Pi^{R}_{\mu\nu}(k) \frac{1}{e^{\beta\omega} - 1}$$

μ⁺ μ⁻

Dileptons:

$$\frac{d^6 R}{d^3 p_+ d^3 p_-} = \frac{2e^2}{(2\pi)^6} \frac{1}{k^4} L_{\mu\nu} \operatorname{Im} \Pi^{\mu\nu} \frac{1}{e^{\beta w} - 1}$$

In- medium photon self energy:
Directly related to the in-medium vector spectral densities!

- McLerran & Toimela,
 PRD 31 (1985) 545;
- Weldon, PRD 42 (1990) 2384;
- Gale & Kapusta,NPB 357 (1991) 65.

Low, Intermediate, & High Mass Dileptons

- Low-mass:
 - Medium modified spectral density
- Intermediate mass:
 - Radiation from QGP
- High mass:
 - J/ψ etc., suppression
- All masses:
 - Correlated Charm/
 Bottom Decay.

The same model should explain both: Single Photons and Dileptons.

Single photons are penetrating probes. They are emitted at all stages and survive unscathed ($\alpha_e << \alpha_s$). They are "historians" of the heavy ion collision!

Different processes: different characteristic spectra!

Direct Photons Different Sources - Different Slopes

Rate

Photons are result of convolutions of the emissions from the entire history of the nuclear collision, so we need rates & a model for evolution.

- Hydrodynamics.
- · Cascades.
- Fire-balls.
- Cascade+Hydro.

Partonic Processes for Production of Prompt Photons in Hadronic Collisions

Compton

Annihilation

Fragmentation

Calculate using NLO pQCD [with shadowing & scaling with $T_{AA}(b)$ for AA, partons remain confined to individual nucleons; do not forget the isospin!]

The quarks will lose energy *before fragmenting* if there is QGP; suppressing the fragmentation contribution.

See e.g., Jeon, Jalilian-Marian, Sarcevic, NPA 715 (2003) 795, "QM-2002".

In the QGP we also have:

Annihilation with scatterring; First calculated by Aurenche et al, PRD 58 (1998) 085003.

Medium induced bremsstrahlung;

First calculated by Zakharov,

JETP Lett. 80 (2004) 1;

Turbide et al, PRC 72 (2005) 014905.

Zhang, Kang, & Wang, hep-ph/0609159.

Complete leading order results: Arnold, Moore, Yaffe, JHEP 0112 (2001) 009. NLO is at most 20% and similar in shape (see JHEP 1305 (2013) 010).

Examples of Hadronic Processes Involving π & ρ for Production of Photons

First calculated by Kapusta, Lichard, & Seibert, PRD 44 (1991) 2774.

- Include πρ→a₁→ πγ
 Xiong et al, PRD 46 (1992) 3798;
 Song, PRC 47 (1993) 2861.
- Include baryonic processes.
 Alam et al, PRC 68 (2003) 031901.
- Medium modifications; (Series of valuable papers, T and μ_b) Alam et al, Ann. Phys. 286 (2001) 159.
- Include strange sector, massive Yang- Mills theory, form-factors, baryons, t-channel exchange of ω mesons etc. Turbide, Rapp, Gale, PRC 69 (2004) 014903.

Complete Leading Order Rates from QGP & Exhaustive Reactions in Hadronic Matter

Rates are similar !!

We need QGP at higher T₀ for golden photons to clearly outshine others.

Arnold, Moore, & Yaffe, JHEP 0112 (2001) 009. Turbide, Rapp, & Gale, PRC 69 (2004) 014903.

Upper Limit of Single Photons, WA80

Ruled out hadronic gas with limited hadrons: π , ρ , ω , & η .

S. and Sinha, PRL 73 (1994) 2421; Dumitru et al., PRC 51 (1995) 2166.

Sollfrank et al., Lee & Brown, Arbex et al., .

Cleymans, Redlich, & S., PRC 55 (1997) 1431. However, $n_{had} >> 2-3 / fm^3$! For No Phase Transition.

WA98: 2-loop → Complete O(α_s) for QGP & πρa₁→ Exhaustive Hadronic Reactions for hadrons

S. & Sinha, PRC 64 (2001)034902 (R).

S., PRC 71 (2005) 034905.

Hydrodynamics, QGP + rich EOS for hadrons & accounting for the prompt photons

Interaction of hard-scattered parton with dense matter

Fries, Mueller, & S., PRL 90 (2003) 132301.

Jet-Initiated EM Radiations from QGP

 Annihilation and Compton processes peak in forward and backward directions:

- one parton from hard scattering, one parton from the thermal medium; cutoff $p_{v,min} > 1 \text{ GeV/c}$.
- > photon carries momentum of the hard parton
- ➤ Jet-Photon Conversion
- ➤ This puts photon production and jet-quenching on the same page!!

Jet-Photon Conversion: Rates

Annihilation and Compton rates:

quark (-jet) distribution

$$E_{\gamma} \frac{dN^{(A)}}{d^{4}xd^{3}p_{\gamma}} = \frac{16E_{\gamma}}{2(2\pi)^{6}} \sum_{q=1}^{N_{f}} f_{q}(p_{\gamma})$$

$$\times \int d^{3}p f_{q}(p)[1 + f_{g}(p)] \sigma^{(A)}(s) \frac{\sqrt{s(s - 4m^{2})}}{2E_{\gamma}E} + (q \leftrightarrow \overline{q})$$

$$E_{\gamma} \frac{dN^{(C)}}{d^{4}xd^{3}p_{\gamma}} = \frac{16E_{\gamma}}{2(2\pi)^{6}} \sum_{q=1}^{N_{f}} f_{q}(p_{\gamma})$$

$$\times \int d^{3}p \, f_{g}(p) [1 - f_{q}(p)] \, \sigma^{(C)}(s) \frac{s - m^{2}}{2E_{x}E} + (q \leftrightarrow \overline{q})$$

thermal medium:

$$E_{\gamma} \frac{dN_{\gamma}}{d^{3} p_{\gamma}} = \frac{\alpha \alpha_{s}}{8\pi^{2}} \int d^{4}x \frac{2}{3} \left[f_{q}(p_{\gamma}) + f_{\overline{q}}(p_{\gamma}) \right] T^{2} \left(\ln \frac{4E_{\gamma}T}{m^{2}} + C \right)$$

Photons from Passage of Jets through QGP

Fries, Mueller, & S., PRL 90 (2003) 132301.

This "bremsstrahlung" contribution will be suppressed due to E-loss and there will be an additional jet-induced bremsstrahlung, which is also similarly suppressed, leaving the jet-conversion photons as the largest source for $p_T = 4-10$ GeV.

FMS Results: Comparison to Data

calibrate pQCD calculation of direct and Bremsstrahlung photons via p+p data:

For p_t<6 GeV, FMS photons give significant contribution to photon spectrum: 50% @ 4GeV.
</p>

Proper Isospins & Shadowing !!!

Fries, Mueller, & S., PRC 72 (2005) 041902(R).

AMY and One-Stop Treatment of Jet-Quenching and Jet-Initiated Photons

Turbide, Gale, Frodermann, & Heinz, hep-ph/0712.732

This supersedes Turbide, Gale, Jeon, & Moore, PRC 72 (2005) 014906; which used AMY but all the processes were calculated using hard spheres and ignoring transverse expansion.

Parton Cascade Model

Embedded in the partonic cascades

Renk, Bass, & S., PLB 632 (2006) 632.

LPM plays a significant role.

Bass, Mueller, & S., PRC 66 (2002) 061902 (R).

Initial temperature? Thermal radiation

Phys.Rev.Lett.104:132301,2010

Low mass, high p_T e⁺e⁻ →
nearly real photons
Large enhancement above
p+p in the thermal region

pQCD γ spectrum: q+g→q+γ (Compton scattering @ NLO) agrees with p+p data₆

Thermal photons from Au+Au@RHIC

d'Enterria & Peressounko, EPJC 46 (2006) 451.

Elliptic Flow of Thermal Photons: Measure Evolution of Flow!

Impact Parameter Dependence of v₂

Elliptic Flow of Thermal Dileptons: Measure Evolution of Flow!

Elliptic flow of thermal photons

Event-by-event fluctuating initial density distribution

produce more high p_T photons compared to a smooth initial state averaged profile.

The 'hotspots' in the fluctuating events

Fluctuation size parameter σ=0.4 fm

Triangular flow of thermal photons

v₃ (p_T) for 2.76A TeV Pb+Pb@ LHC

σ dependence of v₃

Chatterjee, Holopainen, DKS [in preparation]

Intensity Interferometry of Thermal Photons

two-photon The correlation function for average photon momenta 100 < K_T < 200 MeV/c (top) and $200 < K_T < 300 \text{ MeV/c}$ (bottom). The solid line shows the fit result in the fit region used (excluding the π^0 peak at $Q_{inv} \approx m_{\pi 0}$) and the dotted line shows the extrapolation into the low Q_{inv} region where backgrounds are large.

M. M. Aggarwal et al., [WA98 collaboration] PRL 93, 022301 (2004)

Intensity Interferometry of Thermal Photons @SPS

WA98 measures R_{inv} as 8.34 ± 1.7 fm and 8.63 ± 2.0 fm, respectively

A one-dimensional analysis of the correlation function
C is performed in terms of the invariant momentum difference as follows:

$$\begin{split} &C(q_{inv}) = 1 + \frac{1}{2} \lambda \exp \left[-q_{inv}^{2} R_{inv}^{2} / 2 \right] \\ &q_{inv} = \sqrt{-(k_{1}^{\mu} - k_{2}^{\mu})^{2}} = \sqrt{-q_{0}^{2} + q^{2}} \\ &= \sqrt{2k_{1T}k_{2T}} \left[\cosh(y_{1} - y_{2}) - \cos(\psi_{1} - \psi_{2}) \right] \\ &\text{where, } q^{2} = q_{out}^{2} + q_{side}^{2} + q_{long}^{2} \end{split}$$

For $y_1=y_2=0$ and $\psi_1=\psi_2=0$, $q_{side}=q_{long}=q_{inv}=0$, but $q_{out}=k_{1T}-k_{2T}$.ne.0

DKS, PRC 71 (2005) 034905.

- # pre-equilibrium contributions are easier identified at large p_T
- # window of opportunity above $p_T = 2$ GeV.
- # at 1 GeV, need to take thermal contributions into account.

- short emission time in the PCM, 90% of photons before 0.3 fm/c
- hydrodynamic calculation with τ_0 =0.3 fm/c allows for a smooth continuation of emission rate

Photons: HBT Interferometry

 p_t=2 GeV: prethermal photons dominate, small radii

p_t=1 GeV:
 superposition of
 pre- & thermal
 photons:
 increase in radii

Outward correlation function of thermal photons for 200A GeV Au+Au collision at RHIC

The outward, sideward, and longitudinal correlation functions for thermal photons produced in central collision of gold nuclei at RHIC taking τ_0 = 0.2 fm/c. Symbols denote the results of the calculation, while the curves denote the fits.

Correlation function in the two phases can be approximated as

$$C(q_{i,\alpha}) = 1 + 0.5 |\rho_{i,\alpha}|^2$$

where,

$$\rho_{i,\alpha} = I_i \exp[-0.5q_i^2 R_{i,\alpha}^2]$$

i=out, side, and long α = quark matter (Q) or hadronic matter (H)

DKS and R. Chatterjee; arXiv: 0907.1360

The outward, sideward, and longitudinal correlation functions for thermal photons produced in central collision of lead nuclei at LHC taking τ_0 = 0.2 fm/c. Symbols denote the results of the calculation, while the curves denote the fits.

	$\mathbf{R}_{\mathbf{Q}}$	R _H	$\Delta \mathbf{R}$
0	3.3	10.7	18.7
S	3.0	3.6	0.
1	0.9	3.2	0.

DKS and R. Chatterjee arXiv: 0907.1360

How Sensitive Are We to Equation of State?

(i) Volume corrected hadron and Hagedorn resonance gas matched with a Bag Model ((HHB).

(v) Volume corrected hadron and Hagedorn resonance gas matched with Lattice calculations (HHL).

Speed of sound

Pion, kaon, proton and thermal photon p_T spectra at RHIC for the equations of state, HHB and HHL. All the calculations are for impact parameter b=0 fm.

Pion, kaon, proton and thermal photon p_T spectra at LHC for the equations of state, HHB and HHL. All the calculations are for impact parameter b=0 fm.

State of strongly interacting matter.

❖ Discover interference of photons from quark matter and hadrons, predicted by DKS and R. Chatterjee.

Dropping m_{ρ} vs. increasing Γ_{ρ}

Only brodening of ρ (RW) observerd, no mass shift (BR)

M [GeV]

Passage of Jets Through QGP

PQCD framework: Jets

Medium modified fragmentation functions:

$$\tilde{D}_{p \to h}(z) = D_{p \to h} \left(\frac{z}{1 - \Delta E / E} \right)$$

Measured medium property:

$$\hat{q} \sim \int dx \langle F^{+i}(x) F_{+i}(0) \rangle$$

Factorization:

$$\sum_{X} \frac{d\sigma_{AA'\to hh'+X}}{dQ^2} = \sum_{p,p'} F_{A\to p}^{(1)} F_{A'\to p'}^{(2)} \otimes \sum_{\widetilde{p}\widetilde{p}'} \frac{d\sigma_{pp'\to\widetilde{p}\widetilde{p}'}}{dQ^2} \otimes \widetilde{D}_{\widetilde{p}\to h}^{(1)} \widetilde{D}_{\widetilde{p}'\to h'}^{(2)}$$

$$\otimes \sum_{\widetilde{p}\widetilde{p}'} \frac{d\sigma_{pp'\to\widetilde{p}\widetilde{p}'}}{dQ^2}$$

$$\overset{\bullet}{\otimes} \widetilde{\mathrm{D}}_{\widetilde{p} \to h}^{(1)} \widetilde{\mathrm{D}}_{\widetilde{p}' \to h'}^{(2)}$$

- Use the state of the most promising signatures of formation of QGP
- It is defined as the suppression of high momentum particle spectra, arising due to energy loss of partons prior to fragmentation.

It is quantatively measured through the nuclear modification factor R_{AA} , which is defined as:

$$R_{AA}(p_T,b) = \frac{d^2N_{AA}(b)/dp_T dy}{T_{AA}(b)d^2\sigma_{NN}/dp_T dy}$$

Confirmation of High Density Matter

Photon tagged jets

γ-jet correlation

- $-E_{\gamma}=E_{\rm jet}$
- Opposite direction
- Direct photons are not affected by the medium
- Parton in-medium-modification through the fragmentation function

$$D(z), z = p^{\text{hadron}}/E_{\gamma}$$

Wang, Huang, & Sarcevic, PRL 77 (1996) 231. See also, Renk, PRC 74 (2006) 034906, for differentiation of mechanisms of E-loss, and several results at this meeting.

Golden Channels :

$$g + q \rightarrow \gamma + q$$
 (Compton)

$$q + \overline{q} \rightarrow \gamma + g$$
 (Annihilation)

•
$$p_T > 10 \text{ GeV/c}$$

Dilepton vs. photon tagged jets

Photon tagged jets:

- Difficult measurement:
- At low p_T , $\pi^0 \rightarrow \gamma \gamma$ large background.
- At higher p_T, background problem better but opening angle becomes smaller.

Compton

Dilepton tagged jets:

- Lower yield but lower back-ground.
- Charm and beauty decay could be identified.
- M and p_T: two handles!
- Gold plated standard via Z⁰ tagging at LHC.

S., Gale, & Awes, PRC 67 (2003) 054904; Lokhtin et al, PLB 599 (2004) 260.

Azimuthal tagging of jets with photons/dileptons

❖Neutral pion production for p-p collisions at RHIC

S. De and DKS, arXiv:1107.5659

$$Q = Q_R = Q_F$$
$$= cp_T$$

- ■Next-to- leading order $O(\alpha_s^3)$ calculations are used.
- •CTEQ4M parton distribution function.
- BKK fragmentation function.

While calculating particle production in AA collisions, we include:

- Nuclear shadowing. (EKS98 parameterization)
- ☐ Energy loss of partons in the medium.
- ☐ Average path length traversed by the parton.
- The average path length $L(\phi,b)$ traversed by a parton for non-central collisions of impact parameter b.

$$L(\varphi,b) = \frac{\iint l(x, y, \varphi, b) T_{AB}(x, y; b) dx dy}{\iint T_{AB}(x, y; b) dx dy}$$

We follow a simple phenomenological model based on the formalism of Baier et.al. and first used by S. Jeon et al at RHIC energies, to estimate parton energy loss.

☐ The formation time of the radiated gluon:

$$t_{form} = \frac{\omega}{k_T^2}$$

 ϵ - energy loss per collision, λ_a - mean free path:

$$t_{form} \le \lambda_a$$
 BH limit $\varepsilon \approx \alpha_s \frac{N_c}{\pi} E$

$$\lambda_a < t_{form} < L$$
 LPM limit $\varepsilon \approx \alpha_s \frac{N_c}{\pi} \sqrt{E_{LPM} E}$

$$t_{form} \ge L$$
 Coherence limit $\varepsilon \approx \alpha_s \frac{N_c}{\pi} \langle k_T^2 \rangle L$

where
$$E_{LPM} = \lambda_a \langle k_T^2 \rangle$$

•The probability for a parton to scatter n times before it leaves the medium

$$P_a(n,L) = \frac{(L/\lambda_a)^n}{n!} e^{-L/\lambda_a}$$

■The effect of energy loss of partons and multiple scatterings are implemented through the modification of D_{c/h}(z,Q²) following the model of Wang-Huang-Sarcevic.

$$zD_{c/h}(z,L,Q^2) = \frac{1}{C_N^a} \sum_{n=0}^N P_a(n,L) \times \left[z_n^a D_{c/h}^0(z_n^a,Q^2) + \sum_{m=1}^n z_m^a D_{g/h}^0(z_m^a,Q^2) \right]$$

where,
$$C_N^a = \sum_{n=0}^N P_a(n,L)$$
, $z E_T^a = z_n^a \left(E_T^a - \sum_{i=0}^n \mathcal{E}_a^i \right)$ and $z_m^a \mathcal{E}_a^m = z E_T^a$

R_{AA} of neutral pions for Au-Au collisions at RHIC

S. De and D. K. S., arXiv:1107.5659

Complete Coherence Regime

R_{AA} of charged hadrons for Pb+Pb @ 2.76 ATeV : CMS preliminary

Centrality dependence of dE /dx at RHIC & LHC

Taking the case of parton energy loss in the complete coherence regime, $-dE/dx = \epsilon / \lambda$

The concerned partons having $p_T \ge 8 \; GeV/c$ at RHIC and

$$p_T \ge 10 \; GeV/c$$
 at LHC

Pb+Pb @ 2.76 ATeV 0-5%, ALICE coll.

<L> \sim 6.90 fm -dE/dx =2.4 GeV/fm

We see that the energy lost by the partons,

 $\Delta E \propto L^2$

Heavy Quark Propagation

4 Initial Fusion

- Jet-jet interaction
- Thermal production
- Passage of jets through Quark Gluon Plasma.
- NLO effects.
- Back to back correlations
- dE/dx

Heavy Quark Production

M. Younus & DKS, J. Phys. G 37, 115006 (2010)

Taking pp collisions as the base-line may not be appropriate as mechanisms other than initial fusion may contribute. There is also a growing evidence for multiple scatterings of partons in pp collisions.

Energy and flavour dependence of parton energy loss

Refs: JPG 39, 095003 (2012); 015001 (2012); arXiv: 1112.2492

Bethe- Heitler Limit of Incoherent Radiation:

$$\Delta p = \alpha_B p$$

LPM Limit of Coherent Radiation:

$$\Delta p = \alpha_{\rm L} \sqrt{p}$$

RHIC:
$$\alpha_{\rm B}^{\rm Light} \approx 2.5 \, \alpha_{\rm B}^{\rm Heavy}$$

LHC:
$$\alpha_{\rm B}^{\rm Light} \approx 1.3 \alpha_{\rm B}^{\rm Heavy}$$

Conclusions

- The discovery of quark gluon plasma has provided confirmation of one of the most spectacular predictions of QCD- the theory of strong interactions.
- Single photons, dileptons, jets, and heavy quarks provide interesting details of initial stage of the plasma and its dynamics.
- The initial state in these collisions is hot ~300-500 MeV and dense, 20-100 GeV/fm^3, similar to the matter in early universe.

Back up slides

If I had more time:

- Intensity Interferometry of direct photons
- **D. K. Srivastava,** PLB 307(1993)1.
- **D. K. Srivastava and J. I. Kapusta**, PRC 48 (1993) 1335.
- **D. K. Srivastava**, PRD 49 (1994) 4523.
- S. A. Bass, B. Muller, D. K. Srivastava, PRL 16 (2004) 162301;
- **D. K. Srivastava,** PRC 71 (2005) 034905.
- **D. K. Srivastava & R. Chatterjee**, PRC 80(2009) 054914.
- S. De, R. Chatterjee, D. K. Srivastava, J. Phys. G37 (2010) 115004.

Most Reliable Historians of Ancient India

"A Record of Budhist Kingdoms": Fa Hien (337-422 AD): visited India during 399-414 AD.

"Journey to the Western World": Huen Tsang (Yuoan Chwang) 603-664 AD: visited India during 630-645 AD.

They traversed India like photons and dileptons and left most valuable records!!

Most Reliable Historians of Ancient India

"A Record of Budhist Kingdoms": Fa Hien (337-422 AD): visited India during 399-414 AD.

"Journey to the Western World": Huen Tsang (Yuoan Chwang) 603-664 AD: visited India during 630-645 AD.

They traversed India like photons and dileptons and left most valuable records!!

Intermediate Mass; NA50

Kvasnikova, Gale, & Srivastava, PRC 65 (2002) 064903.

Acceptance and detector resolution accurately modeled.

See also Rapp & Shuryak, PLB 473 (2000) 13.

Photons: pre-equilibrium vs. thermal

- short emission time in the PCM, 90% of photons before 0.3 fm/c
- hydrodynamic calculation with $\tau_0=0.3$ fm/c allows for a smooth continuation of emission rate
- caveat: medium not equilibrated at τ₀

- ▶ pre-equilibrium contributions are easier identified at large p_t:
- •window of opportunity above p_t=2 GeV
- •at 1 GeV, need to take thermal contributions into account

Photons: HBT Interferometry

 p_t=2 GeV: prethermal photons dominate, small radii

p_t=1 GeV:
 superposition of
 pre- & thermal
 photons:
 increase in radii

Bass, Mueller, & Srivastava, PRL 93 (2004) 16230; Srivastava, PRC 71 (2005) 034905.

Elliptic Flow of Thermal Dileptons

Elliptic Flow of Decay Photons

$$v_2(k_T) \approx v_2^{\pi^0}(p_T),\tag{7}$$

where

$$p_T \approx k_T + \delta \tag{8}$$

and $\delta \approx 0.1$ –0.2 GeV, for $k_T > 0.2$ GeV, to an accuracy of better than 1%–3%.

Layek, Chatterjee, Srivastava, PRC 74 (2006) 044901.

Theoretical Interpretation of High- $p_T \pi^0$ Suppression

- Large suppression implies large energy loss. Model calculations indicate high gluon densities $dN_g/dy \sim 1100$
- Implies large energy density (as do also E_T measurements) ϵ > 10 GeV/fm³ well above critical energy density $\epsilon_{crit} \sim 1$ GeV/fm³

$$R_{AA}(p_T) = \frac{(1/N_{evt}^{AA}) d^2 N_{ch}^{AA} / d\eta dp_T}{\langle N_{coll} \rangle (1/N_{evt}^{pp}) d^2 N_{ch}^{pp} / d\eta dp_T}$$

QGP or Hot Hadrons? Enter WA98

Huovinen et al, PLB 535 (2002) 109. QGP or hadrons ($n_{had} >> 1/fm^3$ at $T_i = 245-275 \text{ MeV}$)

QGP

 v_0 .ne.0

Hadrons

(m_{had} →0 at T_i=205 MeV for all hadrons)

Alam et al, PRC 63 (2001) 021901 (R).