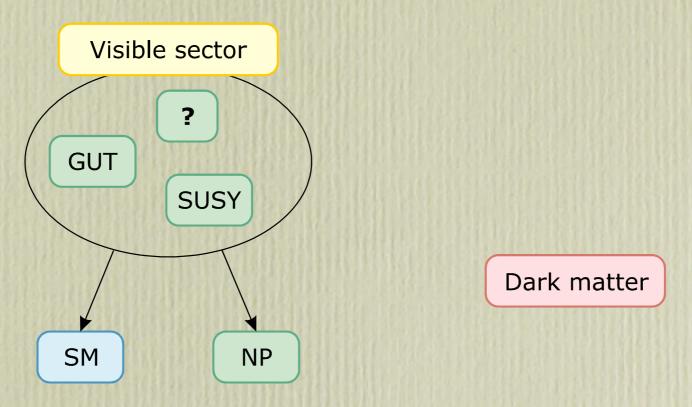

DARK SIDE OF HIGGS BOSON

Jernej F. Kamenik

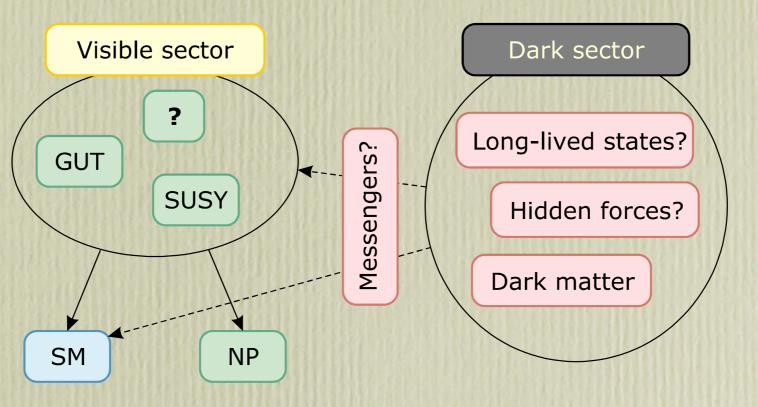


17/10/2013, Geneva

Are there only SM particles at low-energy?

• Experimentally:

- Even very light states could be missed if very weakly interacting,
- There is dark matter in the Universe; it could be relatively light.
- Theoretically: Plenty of models predict new light particles
 - Pseudo-Goldstone scalars (axion, familon,...),
 - U(1) vectors (string, ED,...),
 - Hidden sectors & messengers (SUSY, mirror worlds,...)
 - Many others: millicharged fermions, dilaton, majoron, neutralino, sterile neutrino, gravitino,...



taken from C. Smith @ LPC - Clermont-Ferrand, 4/2012

 Heavy NP can be projected onto effective gaugeinvariant operators built in terms of SM fields.

$$\mathcal{L}_{SM} + \frac{c_v}{\Lambda} (HL)^2 + \frac{c_i}{\Lambda^2} Q_i + \dots$$

Buchmuller & Wyler, Nucl.Phys. B268 (1986) 621 Grzadkowski et al., arXiv:1008.4884

X = dark sector state connected to the SM, or a light messenger.

taken from C. Smith @ LPC - Clermont-Ferrand, 4/2012

• Take X as neutral, but include all possible interactions as SM gauge-invariant effective operators. J. F. K. & C. Smith, 111.6402

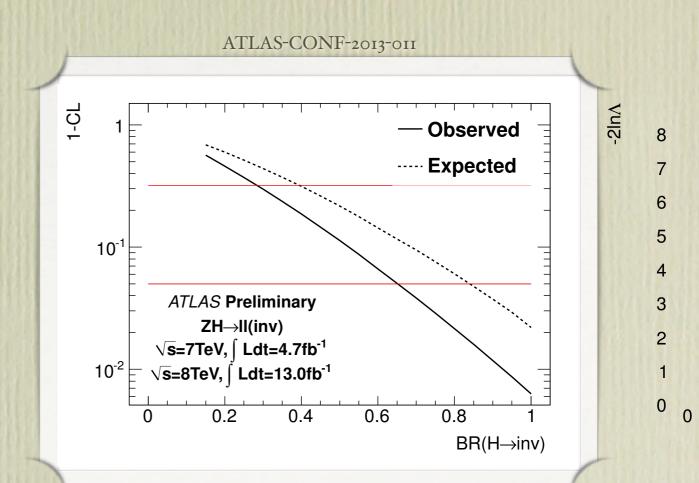
$$\mathcal{L}_{SM} + \frac{c_{\nu}}{\Lambda} (HL)^2 + \frac{c_i}{\Lambda^2} Q_i + \dots + \sum_{d \ge 3} \frac{c_i}{\tilde{\Lambda}^{d-4}} Q'_i + \dots$$

Assumptions about the dark state X :

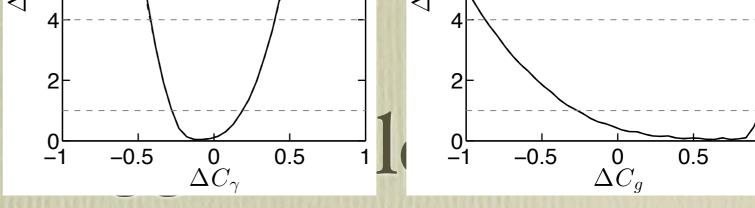
- Not stable \Rightarrow No DM constraints (2nd part)
- Long-lived \Rightarrow Escapes as missing energy.
- Weakly coupled ⇒ Does not affect SM processes.

 \Rightarrow Main impact is then to open new decay channels.

		(decay probes)	(SM width suppression)
100	10 10 10 10 10 10 10 10 10 10 10 10 10 1	Higgs boson	loop, helicity, phase-space
10		Quarkonium	Zweig rule
1		K & B FCNCs	CKM
		LFV	neutrino mass
0.1		Light mesons	loop, helicity
0.001		Orthopositronium	phase-space

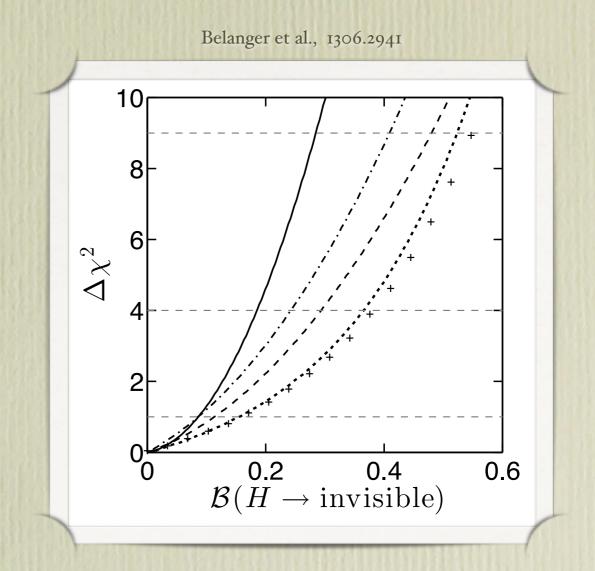

 \Rightarrow Main impact is then to open new decay channels.

		(decay probes)	(SM width suppression)
100		Higgs boson	loop, helicity, phase-space
10		Quarkonium	Zweig rule
1	m _X [GeV]	K & B FCNCs	CKM
	mx[(LFV	neutrino mass
0.1		Light mesons	loop, helicity
0.001		Orthopositronium	phase-space


 \Rightarrow Main impact is then to open new decay channels.

J. F. K. & C. Smith, 1201.4814

- In SM BR(h→inv) ~ 0.1%
- Testing invisible Higgs decays directly is notoriously difficult
- Assuming SM ZH production rate: BR(h→inv) < 0.65


What a light

• Total width of light SM Higgs boson difficult to measure at LHC $(\Gamma(h)_{\rm SM} \sim 4 \ge 10^{-3} \, {\rm GeV})$

see however Dixon & Li, 1305.3854 Caola & Melnikov, 1307.4935

 Indirect constraints on BR(h→inv) < 0.2 - 0.4 from global fits to Higgs signal yields

• A light Higgs is very narrow in the SM:

 $\frac{\Gamma_h^{SM}}{M_h} \approx 3 \times 10^{-5}$ (comparable to $\Gamma_{J/\psi}/M_{J/\psi}$)

• A light Higgs is very narrow in the SM:

 $\frac{1}{5} \times \frac{\Gamma_h^{SM}}{M_h} \gtrsim \frac{\Gamma_h^{dark}}{M_h} \sim \frac{1}{8\pi} \left(\frac{M_h^2}{\Lambda_d^2}\right)^{d-4} \Rightarrow \Lambda_5 \gtrsim 10 \text{ TeV} , \Lambda_6 \gtrsim 1.1 \text{ TeV}$

possible to probe relatively high NP scales

- A light Higgs is very narrow in the SM
- Lorentz scalar can couple to most operator structures

$$H^{\dagger}H \rightarrow \frac{1}{2}(\mathbf{v}^{2} + 2\mathbf{v}h + h^{2})$$
$$H^{\dagger}\overleftrightarrow{D}_{\mu}H \rightarrow \frac{ig}{2c_{W}}(\mathbf{v} + h)^{2}Z_{\mu}$$
$$\bar{u}HQ \rightarrow \frac{1}{\sqrt{2}}(\mathbf{v} + h)\bar{u}_{R}u_{L}$$

when
$$H \to \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ v+h \end{pmatrix}$$

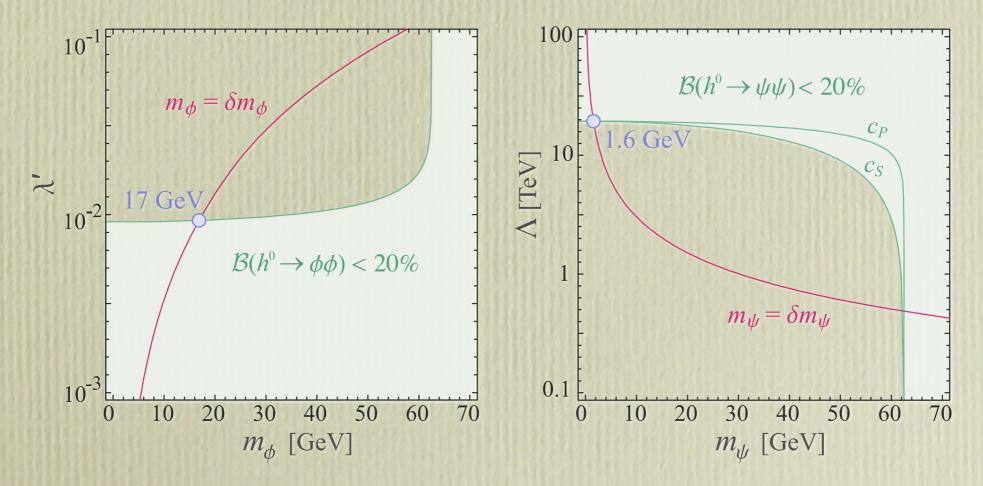
$$HL \to \frac{1}{\sqrt{2}}(v+h)\nu$$

...

- A light Higgs is very narrow in the SM
- Lorentz scalar can couple to most operator structures
- Most promising channels?
 - Invisible: $h \rightarrow \mathbb{E}$
 - Gauge : $h \rightarrow \mathbb{E} + (\gamma, Z)$
 - Fermionic: $h \rightarrow \mathbb{E}$ + (fermions)

Simplest operators are constructed using H[†]H: H⁰_{eff} = λ'H[†]H×φ[†]φ H^{1/2}_{eff} = ¹/_Λ H[†]H×ψ(1, γ₅)ψ (Higgs portals)
Induce both mass correction and invisible decay: H[†]H → ¹/₂(v² + 2vh + h²)

 δm $\Gamma(h \to E)$

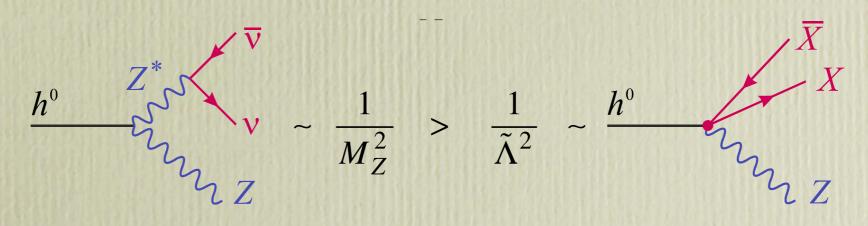

• Without fine-tuning dark and electroweak mass terms: $m_{\phi}^2 \approx \bar{m}_{\phi}^2 + \delta m_{\phi}^2 \ge |\delta m_{\phi}^2|$

 $m_{\psi} \approx \overline{m}_{\psi} + \delta m_{\psi} \gtrsim \left| \delta m_{\psi} \right|$

• Simplest operators are constructed using $H^{\dagger}H$:

 $\mathcal{H}_{eff}^{0} = \lambda' H^{\dagger} H \times \phi^{\dagger} \phi$

$$\mathcal{H}_{eff}^{1/2} = \frac{1}{\tilde{\Lambda}} H^{\dagger} H \times \overline{\psi}(1, \gamma_5) \psi$$



If initially massless (or very light), these dark states must remain light.

- Other operators & decay channels?
 - Higgs current operators:

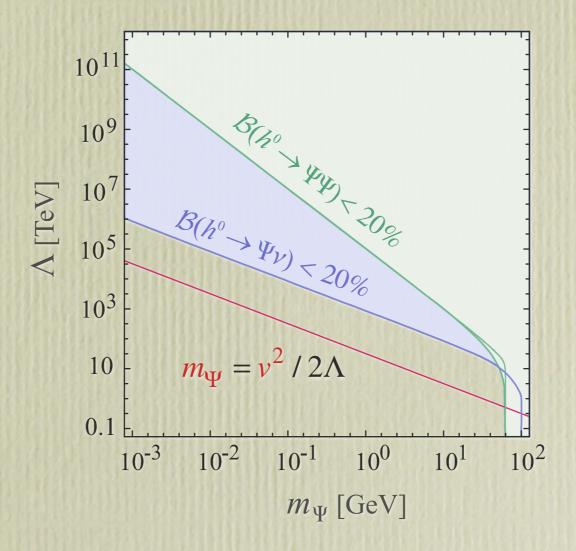
$$\frac{1}{\tilde{\Lambda}^2} H^{\dagger} \bar{\mathcal{D}}^{\mu} H \times (\phi^{\dagger} \bar{\partial}_{\mu} \phi, \bar{\psi} \gamma_{\mu} \psi)$$

Subleading compared to SM at tree-level (same for bilinear fermionic operators).

- Other operators & decay channels?
 - Higgs current & bilinear fermionic operators
 - Neutrino portal operators:

 $H\overline{L}^{c} \times \psi$ - induces neutrino mass

 $\frac{1}{\tilde{\Lambda}^{2}} B_{\mu\nu} H \overline{L}^{C} \sigma^{\mu\nu} \times \psi \quad - \text{ may be accessible for } \gamma$ $\mathcal{B}(h \to \gamma \nu \psi) \approx 2\% \text{ for } \tilde{\Lambda} \approx 0.5 TeV$ $\frac{1}{\tilde{\Lambda}^{3}} H \overline{L}^{C} L H \times \phi^{\dagger} \phi \quad - \text{ dim} = 7 \text{ and } 4\text{-body}$


Examples: Spin 3/2

Massive spin 3/2 dark states?
 Need to specify dark gauge invariance breaking

- *Hard breaking:* no simple way to regulate the divergences
- Soft or no breaking: all effects from gaugeinvariant higher dimensional operators

Examples: Spin 3/2

• Massive spin 3/2 dark states?

When dark gauge invariance is broken, rates are huge!

Higgs as portal to dark matter?

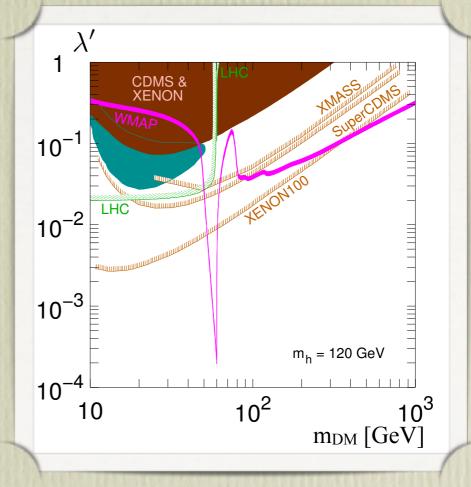
Greljo, Julio, J.F.K., Smith & Zupan, 1309.3561

Higgs portals to DM

• Higgs boson could act as mediator of DM-SM interactions Silveira & Zee, Phys. Lett. B161 (1985) 136 Shrock & Suzuki, Phys. Lett. B110 (1982) 250

$\mathcal{Q}_{H-\mathrm{DM}} \sim H^{\dagger}H \times \mathcal{Q}_{\mathrm{DM}}$

Subject to several nontrivial constraints


Higgs portals to DM

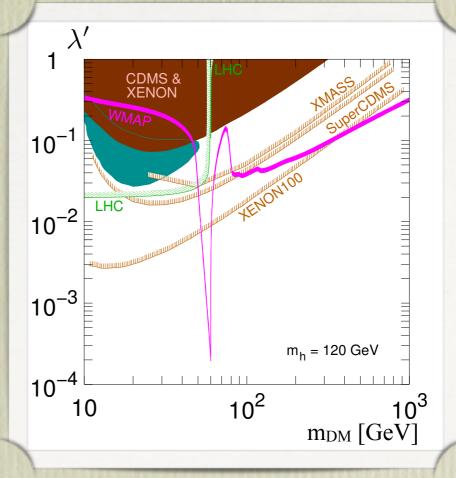
Example: renormalizable portal to scalar DM

Kanemura et al. 1005.5651

- $\Omega_{\rm DM}$ requires $\lambda' \gtrsim 0.1$
- for $m_{DM} < m_h/2$, BR(h \rightarrow inv) imposes $\lambda' < y_b - 0.02$
- for larger m_{DM} accessible via direct detection

see also Lebedev et al. 1111.4482, Mambrini 1106.4819, Djouadi et al., 1112.3299, ... $\mathcal{H}_{eff}^{0} = \lambda' H^{\dagger} H \times \phi^{\dagger} \phi$

Higgs portals to DM


Example: renormalizable portal to scalar DM

Kanemura et al. 1005.5651

- $\Omega_{\rm DM}$ requires $\lambda' \gtrsim 0.1$
- for $m_{DM} < m_h/2$, BR(h \rightarrow inv) imposes $\lambda' < y_b - 0.02$
- for larger m_{DM} accessible via direct detection

see also Lebedev et al. 1111.4482, Mambrini 1106.4819, Djouadi et al., 1112.3299, ...

All lowest dimensional HP operators excluded (for $m_{DM} < m_{b}/2$)

Saving Higgs portals to light DM

Can light DM which couples predominantly to the Higgs be reconciled with its tiny width (and other exp. constraints)?

Scaling of thermal x-section & constraints with HP operator dimension (n)

$$\langle \sigma_{\text{ann.}} v \rangle \sim \frac{y_f^2}{32\pi} \left(\frac{m_h}{\Lambda}\right)^{2n} \left(\frac{m_{\text{DM}}}{m_h}\right)^k G_F$$

 $\mathcal{H}_{\text{eff}} \sim \sum_{n} \frac{1}{\Lambda^n} \mathcal{Q}_{H-\text{DM}}^{(n)}$

(controls relic abundance)

$$\mathcal{B}(h \to \text{invisible}) \sim 10^3 \left(\frac{m_h}{\Lambda}\right)^{2n}$$

(assuming 2-body *b* decays)

$$\frac{\langle \sigma_{\rm dir} \rangle}{\langle \sigma_{\rm dir} \rangle_{\rm excl.}} \sim 10^2 \left(\frac{m_h}{\Lambda}\right)^{2n} \left(\frac{m_{\rm DM}}{m_h}\right)^m \beta^{2m'}$$

(XENON100 bound) $\beta \sim 10^{-3} \quad \text{(DM velocity)}$

Scaling of thermal x-section & constraints with HP operator dimension (n)

$$\langle \sigma_{\text{ann.}} v \rangle \sim \frac{y_f^2}{32\pi} \left(\frac{m_h}{\Lambda}\right)^{2n} \left(\frac{m_{\text{DM}}}{m_h}\right)^k G_F$$

$$\mathcal{H}_{\text{eff}} \sim \sum_{n} \frac{1}{\Lambda^n} \mathcal{Q}_{H-\text{DM}}^{(n)}$$

(controls relic abundance)

$$\mathcal{B}(h \to \text{invisible}) \sim 10^3 \left(\frac{m_h}{\Lambda}\right)^{2n}$$

(assuming 2-body *b* decays)

$$\frac{\langle \sigma_{\rm dir} \rangle}{\langle \sigma_{\rm dir} \rangle_{\rm excl.}} \sim 10^2 \left(\frac{m_h}{\Lambda}\right)^{2n} \left(\frac{m_{\rm DM}}{m_h}\right)^m \beta^{2m'}$$

(XENON100 bound) $\beta \sim 10^{-3}$ (DM velocity)

Presently for light DM Higgs constraints stronger than direct DM detection for any operator dimension

Scaling of thermal x-section & constraints with HP operator dimension (n)

$$\langle \sigma_{\text{ann.}} v \rangle \sim \frac{y_f^2}{32\pi} \left(\frac{m_h}{\Lambda}\right)^{2n} \left(\frac{m_{\text{DM}}}{m_h}\right)^k G_F$$

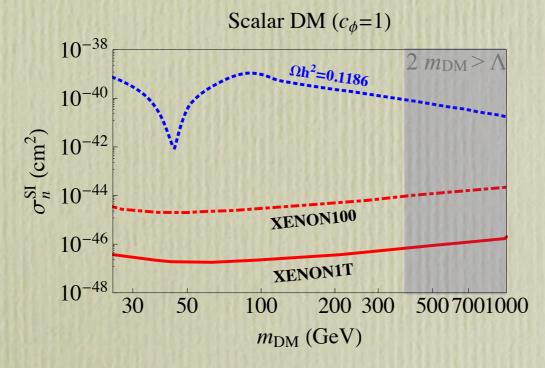
$$\mathcal{B}(h \to \text{invisible}) \sim 10^3 \left(\frac{m_h}{\Lambda}\right)^{2n}$$

 $\mathcal{H}_{\text{eff}} \sim \sum_{n} \frac{1}{\Lambda^n} \mathcal{Q}_{H-\text{DM}}^{(n)}$

(controls relic abundance)

(assuming 2-body *b* decays)

 $\left(\frac{\mathcal{B}_{h}^{\text{invis.}}}{\langle \sigma_{\text{ann.}} v \rangle}\right)_{n} \sim \left(\frac{m_{h}}{m_{\text{DM}}}\right)^{k-k_{\text{min}}} \left(\frac{\mathcal{B}_{h}^{\text{invis.}}}{\langle \sigma_{\text{ann.}} v \rangle}\right)_{n_{\text{min}}} \quad k \ge k_{\text{min}} \text{ for } n > n_{\text{min}}$


Higgs constraints can only become stronger for higher dimensional HP operators

Circumvent Higgs bound via multi-body decay modes

- I. couple to Higgs current: $H^{\dagger}\overleftrightarrow{D}_{\mu}H \rightarrow \frac{\imath g}{2c_{W}}(v+h)^{2}Z_{\mu}$ ("Z portal")
 - $b \rightarrow \text{DM DM } Z$ open only for $m_{\text{DM}} < (m_h m_Z)/2 \simeq 17 \text{ GeV}$
 - $Z \rightarrow E_{\text{miss}}$ measurements close this mass window

Circumvent Higgs bound via multi-body decay modes

I. couple to Higgs current: $H^{\dagger}\overleftrightarrow{D}_{\mu}H \rightarrow \frac{\imath g}{2c_{W}}(v+h)^{2}Z_{\mu}$ ("Z portal")

Example:

$$\mathcal{H}_{\text{eff}}^{0} = \frac{c_{\phi}}{\Lambda^{2}} H^{\dagger} \overleftrightarrow{D}_{\mu} H \times \phi^{\dagger} \overleftrightarrow{\partial}^{\mu} \phi$$

All possibilities excluded by direct detection experiments

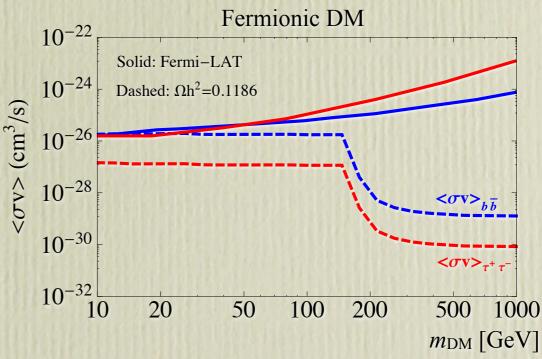
Circumvent Higgs bound via multi-body decay modes

2. generate fermionic bilinears:

 $\Gamma^S = H^{\dagger} \bar{D} Q, \quad H^{\dagger} \bar{E} L, \quad H^{*\dagger} \bar{U} Q, \quad \Gamma^T_{\mu\nu} = H^{\dagger} \bar{D} \sigma_{\mu\nu} Q, \quad H^{\dagger} \bar{E} \sigma_{\mu\nu} L, \quad H^{*\dagger} \bar{U} \sigma_{\mu\nu} Q$

- need to specify flavor structure of DM-SM couplings
- generically severe FCNC constraints

Simplest possibility: assume MFV


 $\Rightarrow \mathcal{B}(h \to \text{DM} + \text{DM} + b\bar{b}) \sim \mathcal{O}(10^{-7})$ (for thermal relic DM, m_{DM}~20GeV)

Circumvent Higgs bound via multi-body decay modes

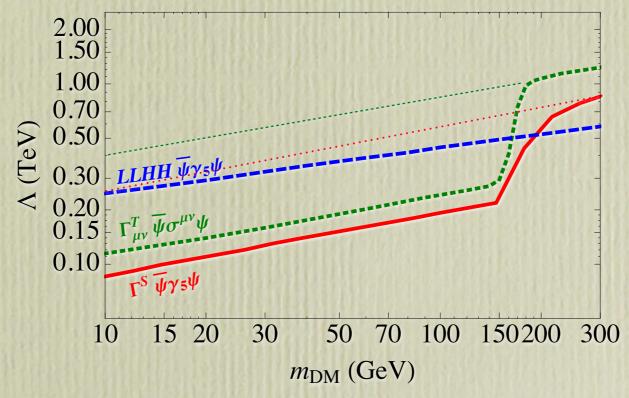
- 2. generate fermionic bilinears:
- severe direct detection bounds (can be avoided for leptophilic DM)
- indirect constraints still relevant

Example:

$$\mathcal{H}_{\text{eff}}^{1/2} = \frac{\sqrt{2}m_f}{v\Lambda^3}\Gamma_f^S \times i\bar{\psi}\gamma_5\psi$$

Circumvent Higgs bound via multi-body decay modes

3. neutrino portals: $Q_{H-DM} \sim L^i L^j H^k H^l \epsilon_{ik} \epsilon_{jl} \times Q_{DM}$

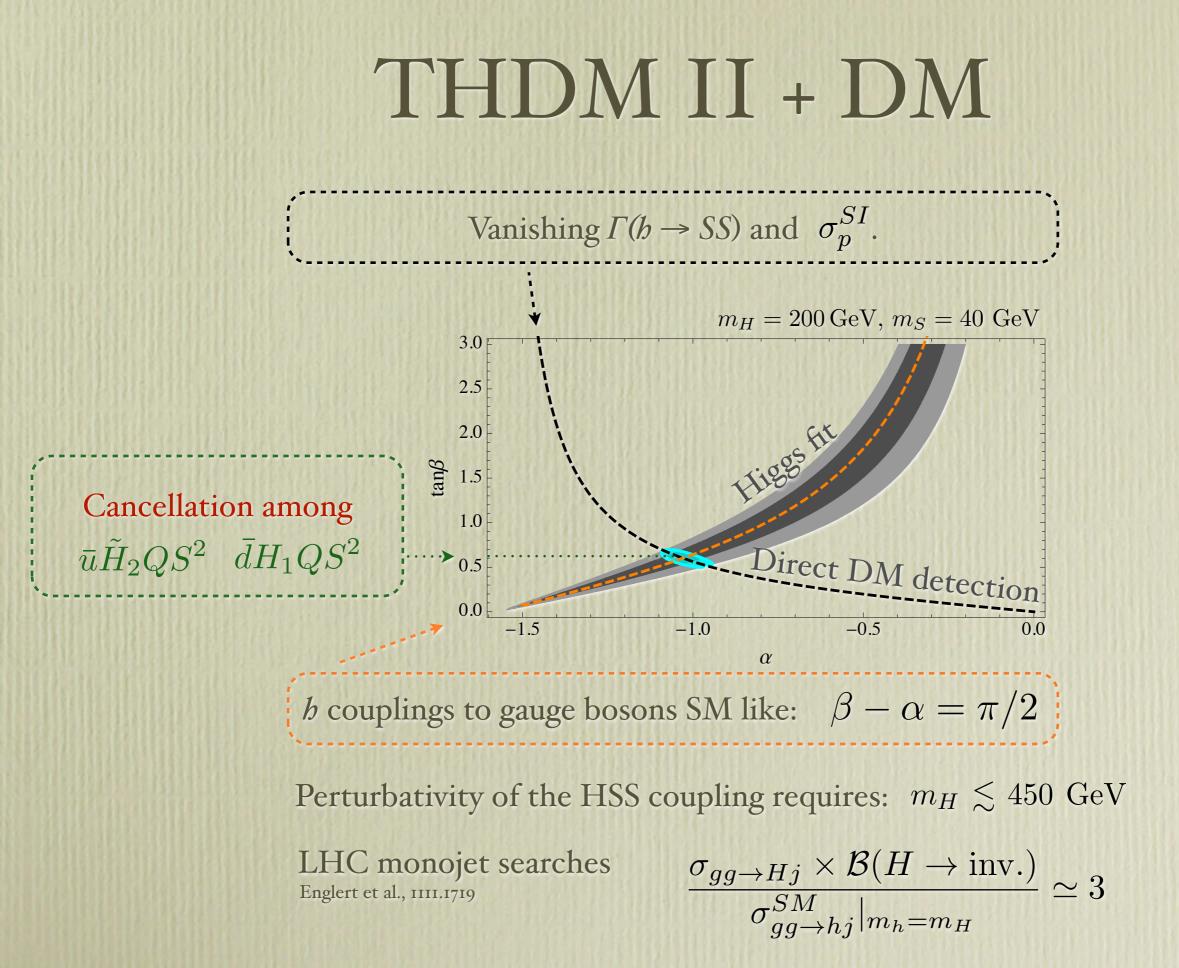

In general severe neutrino mass constraints - can be avoided via:

- parity invariance (purely pseudoscalar DM coupling, $ar{\psi}\gamma_5\psi$)
- lepton number conservation (DM charged under it, $\bar{\psi}^C \psi$)

DM-nucleon x-sections severely suppressed - no direct constraints

 $\Rightarrow \mathcal{B}(h \to \text{DM} + \text{DM} + \bar{\nu}\bar{\nu}) \simeq 10^{-7}$ (for thermal relic DM, m_{DM}~20GeV)

Generic implication of viable extended Higgs portals?

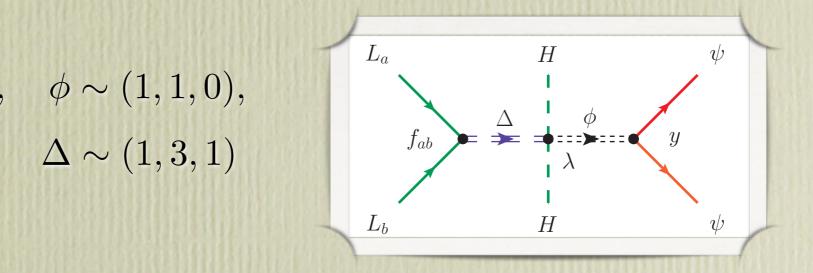

Correct relic abundance requires low A - O(few 100 GeV)

 \Rightarrow new particles with weak scale masses beside DM

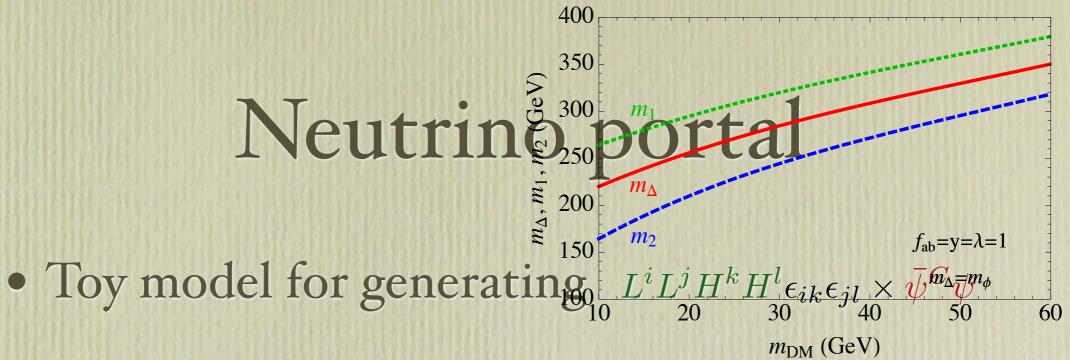
Example I: THDM II + DM

THDM II + DM

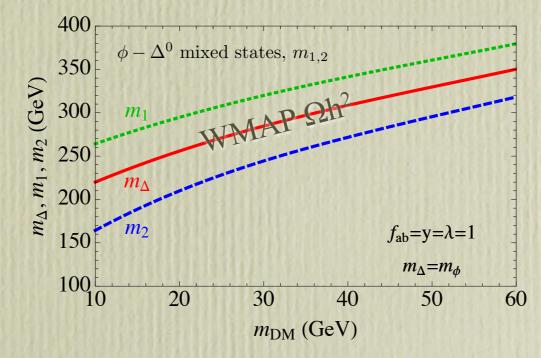
- Simplest realization of extended HP using fermionic bilinears
- Extended scalar sector + 2 x Z₂ $H_1 \sim (1, 2, 1/2)$, $H_2 \sim (1, 2, 1/2)$, $S \sim (1, 1, 0)$ (generates m_d,m_e), (generates m_u) (DM) • After EWSB $\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$ $\tan \beta \equiv v_2/v_1$
 - α, β completely determine *h*, *H* couplings to SM gauge bosons, fermions



Example II: Neutrino portal


Neutrino portal

- Toy model for generating $L^i L^j H^k H^l \epsilon_{ik} \epsilon_{jl} \times \overline{\psi}^C \psi$
- Fermion DM + 2 scalars (all charged under LN)


 $\psi \sim (1, 1, 0), \quad \phi \sim (1, 1, 0),$ (DM)

• Need to suppress leading HP operator by hand

• Fermion DM + 2 scalars (all charged under LN)

- Severe LFV constraints on off-diagonal f_{ab}
- Direct LHC searches for Δ assume f_{aa} =konst.: $m_{\Delta} > 403 \text{ GeV}$, CMS, 1207.2666 can be relaxed to $m_{\Delta} > 204 \text{ GeV}$ if $f_{\tau\tau} >> f_{ee}, f_{\mu\mu}$

Example III: Singlet scalars

Singlet scalars

• Example where DM not lightest NP particle

 $\phi \sim (1, 1, 0), \quad S \sim (1, 1, 0).$ (Z₂ odd DM)

Barger et al., 0811.0393 Arina et al., 1004.3953 Piazza & Pospelov, 1003.2313

• Higgs - singlet mixing via $\mu_2 H^{\dagger} H \phi$

 $h_1 = h \cos \alpha + \phi \sin \alpha$,

 $h_2 = -h\sin\alpha + \phi\cos\alpha,$

• Interesting when $m_{h_1}/2 > m_S > m_{h_2}$ with $m_{h_1} = 125 \,\text{GeV}$

Singlet scalars

- b_2 couplings SM-like (reduced by $|\sin \alpha|$)
- $|\sin \alpha| < 0.1 0.2$ from LEP for m_{b_2} few 10GeV
- $\Omega_{\rm DM}$ set by DM annihilation $SS \rightarrow h_2h_2$
- Satisfies Higgs constraints for comparable SSb₁ and SSb₂ couplings
- Interesting LHC(b) phenomenology

• $h_1 \rightarrow h_2 h_2 \rightarrow 4b$ (possibly displaced) with Br ~ 0.2 see also Halyo et al., 1308.6213

Conclusions

- If a light and long-lived "dark" particle exists:
 - Small width of a light Higgs offers unique window also well beyond minimal portals.
 - Worth to search also for deviations in missing energy modes, h→E, h→E + (γ, Z), h→E + (fermions).

Conclusions

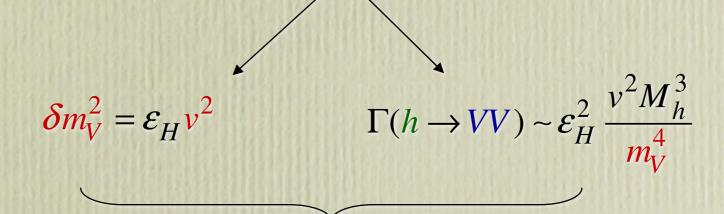
- Could this state be the (thermal relic) dark matter constituent?
 - Couplings through minimal portals disfavored for light DM
 - Significant higher dim. HP interactions allowed only if not inducing h→DM DM
 - Light DM necessarily implies presence of additional new particles with masses below few 100GeV

• Leading operators break a dark gauge invariance:

$$\mathcal{H}_{eff}^{1} = \varepsilon_{H} H^{\dagger} H \times V_{\mu} V^{\mu} + i \varepsilon_{H}^{\prime} H^{\dagger} \bar{\mathcal{D}}^{\mu} H \times V_{\mu}$$
$$\mathcal{H}_{eff}^{3/2} = \frac{c_{\Psi}}{\tilde{\Lambda}} H^{\dagger} H \times \bar{\Psi}^{\mu} (1, \gamma_{5}) \Psi_{\mu} + \frac{c_{\Psi}^{\prime}}{\tilde{\Lambda}} \mathcal{D}_{\mu} H \bar{L}^{C} \times \Psi^{\mu}$$

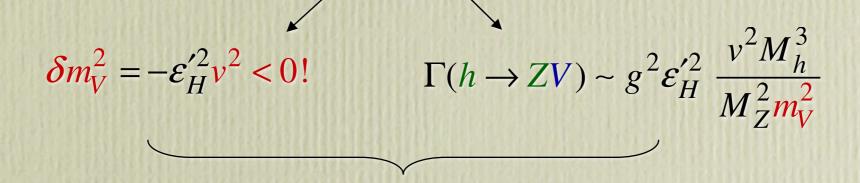
• Consequently, decay rates are singular in the massless limit

$$\sum_{pol} \varepsilon_k^{\mu} \varepsilon_k^{\nu} = -P_V^{\mu\nu} \qquad P_X^{\mu\nu} = g^{\mu\nu} - \frac{k^{\mu}k^{\nu}}{m_X^2}$$
$$\sum_{spin} u_k^{\mu} \overline{u}_k^{\nu} = -(k + m_{\Psi}) \left(P_{\Psi}^{\mu\nu} - \frac{1}{3} P_{\Psi}^{\mu\rho} P_{\Psi}^{\nu\sigma} \gamma_{\rho} \gamma_{\sigma} \right)$$


Need to specify dark gauge invariance breaking

• Hard breaking: (dark SSB or Stückelberg)

For instance, in the SM: $\Gamma(h \to WW) \sim g^4 v^2 P_W^{\mu\nu} P_{W,\mu\nu} \xrightarrow{M_W \to 0} \frac{g^4 v^2}{M_W^4} + \dots \xrightarrow{M_W \sim g\nu} \frac{1}{v^2} + \dots$


Thus impose: $m_V \sim \varepsilon_H v_{dark}$

• *Hard breaking*: (dark SSB or Stückelberg) The $H^{\dagger}H$ operator automatically regulates its massless limit: $\varepsilon_{H}H^{\dagger}H \times V_{\mu}V^{\mu}$

 $m_V^2 \approx \delta m_V^2$: $\Gamma(h \to VV) \gtrsim 80 \times \Gamma_h^{SM}$ (for $M_h \approx 125 \text{ GeV}$) - Dark decay must be forbidden: $\delta m_V > M_h/2$ - A large dark mass must soften the singularity $m_V^2 = \overline{m}_V^2 + \delta m_V^2 = \varepsilon_H (v_{dark}^2 + v^2)$ with $v_{dark} > 1.1 \text{ TeV}$

Hard breaking: (dark SSB or Stückelberg)
 The H[†]D^μH operator fails at regulating its massless limit: ε'_HH[†]D^μH×V_μ

 $m_V^2 \approx -\delta m_V^2$: $\Gamma(h \to ZV) \gtrsim 15 \times \Gamma_h^{SM} \Rightarrow m_V > M_h - M_Z$ (for $M_h \approx 125 \ GeV$) Z-V mixing: $\delta \rho \Rightarrow m_V < 2.4 \ GeV$ EW mass window completely closed

• *No breaking*: (kinematic mixing or dark charge for the Higgs)

 $\mathcal{L}_{kin} = \frac{\chi}{2} B_{\mu\nu} \times V^{\mu\nu}$ need to redefine V-B

• *No breaking*: (kinematic mixing or dark charge for the Higgs)

 $\mathcal{L}_{kin} = \mathcal{D}_{\mu}H^{\dagger}\mathcal{D}^{\mu}H - i\frac{\lambda}{2}H^{\dagger}\mathcal{D}^{\mu}H \times V_{\mu} + \frac{\lambda^{2}}{4}H^{\dagger}H \times V_{\mu}V^{\mu}$

After diagonalizing the mass: The dark vector is massless and entirely decoupled! Holdom, Phys.Lett. Bi66 (1986) 196

Dominant effects then come from higher dimensional operators:

Typically, $\Gamma(h \to VV, ZV, \gamma V, f f V) < 20\% \times \Gamma_h^{SM}$ requires $\tilde{\Lambda} \gtrsim 1 TeV$.

• Soft breaking: $\mathcal{L}_{kin} = \frac{\chi}{2} B_{\mu\nu} \times V^{\mu\nu} + \frac{\overline{m}_V^2}{2} V_{\mu} V^{\mu}$

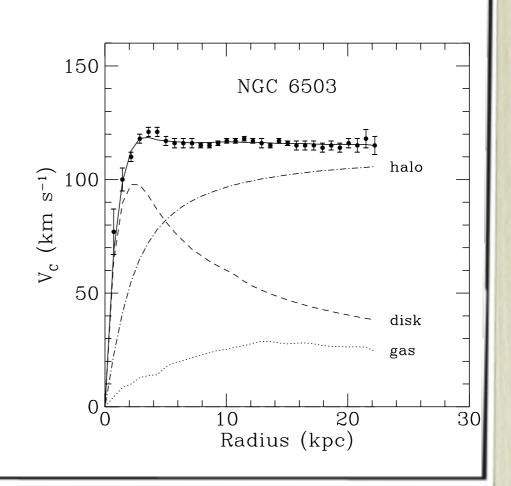
vector mass changes the diagonalization, and upsets its elimination Holdom, Phys.Lett. B166 (1986) 196

 $B_{\mu\nu} \times V^{\mu\nu} \rightarrow c_W J^{em}_{\mu} \times V^{\mu} - s_W m_V^2 Z_{\mu} \times V^{\mu}$

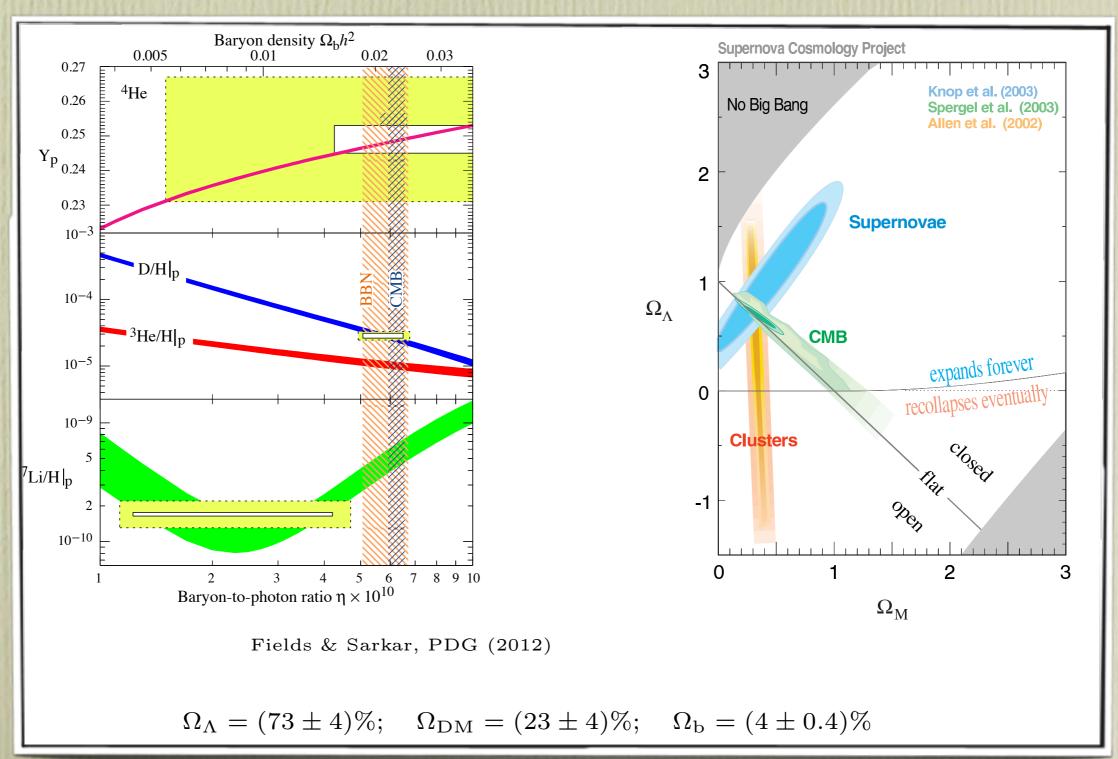
dark field has some couplings to fermions & Higgs $\frac{h^{0}}{h^{0}} \underbrace{\int \gamma \gamma}_{\gamma \gamma V} \frac{h^{0}}{\gamma \gamma}_{\gamma \gamma V} \frac{Z \gamma \gamma V}{\lambda Z} \frac{h^{0}}{Z \gamma \gamma V} \frac{Z \gamma \gamma V}{Z \gamma \gamma V}$

All are very suppressed (δρ,...)

Evidence for Cosmological Dark Matter

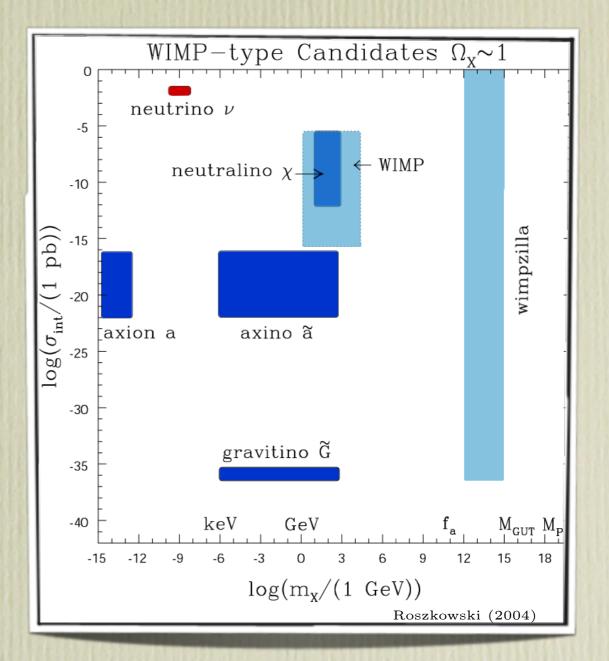

• According to Newton's law, rotational velocity v_c goes as \sqrt{r} :

$$\frac{mv_c^2}{r} = G_N \frac{Mm}{r^2}; \quad M = 4\pi \int \rho(r) r^2 dr$$

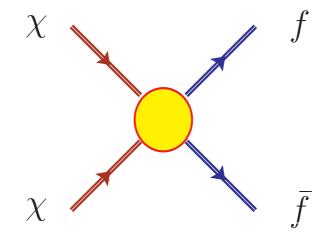

- 1 kpc = 3.26 lyr and $v_c \sim \mathcal{O}(100)$ km/s
- Instead $v_c \sim \text{constant}$ is found:

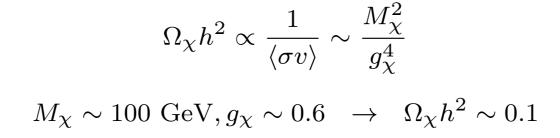
$$M \sim r$$
 and $\rho \sim r^{-2}$

• Could be interpreted as the existence of "missing" mass



Evidence for Cosmological Dark Matter


What is dark matter?


- Electrically neutral, nonbaryonic, massive particle
- Could occur naturally in many models of particle physics

WIMP miracle

• WIMP: Weakly Interacting Massive Particle

- A correct relic abundance can be predicted with mass and coupling being electroweak
- Further clue of connection with Terascale of physics